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Abstract
This paper extends the unit root tests to long memory 
observations in the existence of variance breaks. Given 
for the case of non-constant variance, the asymptotic 
properties of commonly used unit root tests are derived 
under the null hypothesis. It is shown that the non-
constant variance can both inflate and deflate the rejection 
frequency, thus the statistic tests are not robust. The 
simulation results also indicate the extent of size distortion 
is heavily sensitive to the location and magnitude of 
change points, long memory index and sample size. 
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INTRODUCTION
Unit root tests have been one of the most popular 
statistical methodologies for analyzing economic and 
financial time series which are mostly characterized by 
non-stationary components. Testing for unit roots has 
attracted a great deal of attention since the influential 
works of Dickey and Fuller (1979). Various research 
direction is also to widen the applicability of the unit 
root tests under broader correlation structures for the 
innovations. Phillips (1987) and Perron (1988) developed 

tests that are applicable under weakly dependent 
innovation. Furthermore, a great patience has paid to the 
effects of breaks in variance and any other on the unit 
root tests. Clemente, Montane and Reyse (1998) testing 
for a unit root in variables with a double change in the 
mean. Cavaliere and Ttaylor (2007) consider a completely 
different approach to the problem and develop unit root 
tests which are robust to a very general class of volatility 
changes. Sen (2009) shows that unit root tests in the 
presence of an innovation variance break that has power 
against the mean break stationary alternative. Harvey, 
Leybourne and Taylor (2014) proposed on infimum 
Dickey–Fuller unit root tests allowing for a trend break 
under the null. oh and Kim (2015) propose Lagrangian 
multiplier type tests based on the residual’s marginal 
likelihood unit root tests when a time series has multiple 
shifts in its level and the corresponding volatility. For 
more details, we refer the reader to Hamori and Tokihisa 
(1997) and Kim et al. (2002) and Giuseppe Cavaliere 
(2004) among others.  

However, the above literature is constrained on short 
memory, a few authors have analyzed the unit root tests 
under long memory series. For example, Sowell (1990) 
generalized the unit root distribution to fractionally 
integrated errors. It is shown that the limiting distributions 
of fractionally integrated series are radically different than 
for series integrated of order zero or one. Glaura, Reisen 
and Paula (2004) using semi-parametric estimators of the 
long-memory parameter on the unit root tests. Guglielmo 
and Gil-Alana (2004) further examine unit root by using 
parametric and semiparametric techniques for modelling 
long memory. Alexander and Lajos (2011) gives an 
account of some of the recent work on structural breaks 
in time series models and cover how one can disentangle 
structural breaks (in the mean and/or the variance) on 
one hand and long memory or unit roots on the other. 
Smallwood (2014) analyzed the consequences of using 
long memory methods to test for unit roots when the 
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“truth” derives from regime switching, structural breaks, 
or other types of mean reverting nonlinearity.

In this paper, the goal of the article is to extend 
the unit root tests to long memory observations in the 
existence of variance breaks. The following work to the 
limit distribution of statistics is obtained and analyzes 
the influence of the statistics for the break points. We can 
conclude that the variance breaks not only depends on 
location, but also depend on long memory index and any 
other. 

The paper is organized as follows. Section 2 introduces 
the main results, the model and limit distribution. Some 
Monte Carlo experiments are included in Section 3. 
Section 4 draws the conclusion.

1. MAIN RESULT
This section exports the limiting distribution of test 
statistics when change points are taken into consideration. 
Before presenting our main results, we should introduce 
the long memory series. In the last two decades, we have 
witnessed a rapid development for statistical inference of 
long range dependent (or long memory) time series; see 
Beran (1994), Robinson (2003) among others for book-
length treatments of this topic. Let

(1－L)dzt = εt, t∈Z ,
where L is the backward shift operator and {εt} is a mean 
zero covariance stationary dependent process. We say 
that the process zt possesses long memory if d∈(0,0.5) 
since it exhibits long-range dependence in the sense that 
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lag j. and short memory if d∈(-0.5, 0).
We focus on the stationary process, and require it 

obeying a functional central limit theorem, as stated 
in the lemma below. Let L  stand for the weak 
convergence. 

The following lemmas are the cornerstone of our 
paper, which have been proved by Sowell (1990) and Tsay 
(1999).
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where σ2
ε is the long-run variance. 

Lemma 2: If (1-L)d εt = ut~IID(0,σ2
u), 
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where σε is defined in Lemma 1 and Bε,d(r) is fractionally 
Brownian Motions. Marinucci and Robinson (1999) has 
given the fractionally Brownian Motions as follows:
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where Γ(·) is the Gamma function and W(s) is a standard 
Brownian motion. 

Now, we suppose εt and ηt are stationary long memory 
series with long memory index d∈(0,0.5) and satisfy the 
Lemma 1 and 2. The model is considered in this paper as 
follows:

yt = yt-1 + zt, t=1,2,...,T,
where

zt = εt+ηtDUt, ,
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and εt and ηs are independent for all t and s. Here, there is 
a variance break at TB, where the location of change point 
TB is assumed to be unknown.

Next, we estimate the model using the following 
regression equation:
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and z^ t is the residual from the regression yt on intercept. 
Based on yt=ρ^ yt-1+z^ t, we consider following two types of 
the statistic for the unit root tests:
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By simplification, the test statistics can be expressed 
as follows:
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Taking into account breaks in variance, we derive the 
limiting distribution of the test statistic as follows:

First,
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hold true, where Bε,d(·) and Bη,d(·) are independent 
Brownian Motions. σ2

ε and σ2
η are the long-run variance 

defined in Lemma 1 and 2.
The symbol L  s ignif ies  convergence in 

distribution. Therefore, the following equation is derived 
that
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and the coefficient λ is the ratio of pre-break sample to 
total sample size. Because Bη,d(r)-Bη,d(λ) has the same 
distribution as Bη,d(r-λ), we obtain 
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In order to more clearly express the effects of the 
breaks in variance, we perform some transformations. The 
new fractionally Brownian Motion is defined as
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Due to the ergodicity of these stationary process, we 
have
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On the other hand,
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As in the proof of the above, the first term converges 
in probability to γε(0) + (1-λ)γη(0) and the other two terms 
both converge to zero. This is because
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Combine these results we can obtain
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2. MONTE CARLO STUDY
In this section we conduct a simulation study to have the 
effects of variance changes on the size of the test statistics. 
We consider the data generating process (DGP) as follows,

(1-L)dεt = ut

(1-L)dηt = vt
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We analyzed each experiment under the following 
settings and all results are in 5% confidence level:

T=100, 250
 0,1,4,10v

u

σ
σ

= .

λ=0.1, 0.3, 0.5, 0.7, 0.9
d=0, 0.2, 0.4
ρ=0.8, 0.9, 0.95
y0=0
Note that coefficient σ1 is normalized to be one. When 

σv / σuthere is no structural break in variance. In each 
experiment, the number of replications was 20,000.

Table 1
Empirical Size :tρ ^ Statistic

 
T=100 T=250

λ

σv/σu 0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9

d=0

0 5.095 5.040 5.365 5.290 5.500 5.015 5.405 5.145 5.410 5.330 

1 5.640 6.745 6.735 6.350 5.510 5.930 6.815 7.335 6.760 5.590 

4 6.470 8.770 11.490 13.395 11.390 6.520 8.775 11.770 13.835 11.540 

10 6.375 9.225 13.675 20.015 22.990 6.545 9.460 13.970 20.680 24.780 

d=0.2

0 5.495 5.330 5.445 5.430 5.800 5.505 4.945 5.035 5.240 5.230 

1 5.915 6.390 6.410 6.315 5.760 5.980 6.370 6.320 6.485 5.380 

4 5.920 8.570 11.050 12.490 9.940 6.050 8.165 10.460 11.870 9.760 

10 6.340 9.350 13.325 18.430 19.105 5.760 8.965 12.805 17.670 19.210 

d=0.4

0 5.805 4.725 4.425 4.750 5.725 5.615 4.965 4.630 4.745 5.120 

1 5.460 5.790 5.135 4.895 6.020 5.545 6.075 5.345 5.130 5.715 

4 5.600 7.265 8.545 7.830 7.780 5.755 7.055 7.615 7.730 7.825 

10 5.525 7.400 9.865 11.525 11.765 5.525 7.160 8.920 10.300 11.790 

Table 2
Empirical Power ρ=0.8:tρ ^^Statistic

 
T=100 T=250

λ

σv/σu 0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9

d=0

0 99.125 99.070 99.230 99.175 99.170 100.000 99.995 100.000 100.000 100.000 

1 98.860 98.095 96.705 94.200 90.420 100.000 100.000 99.985 99.895 99.505 

4 98.715 97.430 95.105 89.380 73.515 100.000 99.990 99.905 99.200 93.090 

10 98.695 97.530 94.490 87.900 69.955 100.000 99.995 99.935 99.065 89.440 

d=0.2

0 99.105 99.120 99.035 98.955 99.220 100.000 100.000 100.000 99.995 100.000 

1 98.795 97.850 96.250 93.340 89.815 100.000 100.000 99.940 99.820 99.195 

4 98.735 97.225 94.480 88.125 73.135 100.000 99.975 99.880 98.950 91.090 

10 98.700 97.050 93.885 87.105 67.540 100.000 99.970 99.840 98.585 86.725 

d=0.4

0 90.840 90.470 90.365 90.745 93.755 99.090 99.100 98.965 99.050 99.135 

1 88.375 86.285 81.855 76.200 72.250 98.610 97.730 95.685 93.065 87.115 

4 88.255 83.985 77.050 67.350 51.690 98.515 96.940 93.630 86.230 67.930 

10 88.095 83.040 76.505 65.850 46.170 98.445 96.965 93.395 84.785 60.970 
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Table 3
Empirical Power ρ=0.9: tρ ^ Statistic

 
T=100 T=250

λ

σv/σu 0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9

d=0

0 75.480 75.635 74.590 74.750 75.210 98.905 98.920 98.790 99.015 98.995 

1 74.495 72.050 69.475 67.055 61.860 98.775 97.880 96.550 93.960 89.800 

4 73.640 70.490 66.745 61.930 53.800 98.630 97.040 94.875 88.805 74.925 

10 73.545 69.700 66.360 60.955 53.500 98.575 97.255 94.530 87.760 70.905 

d=0.2

0 75.395 75.410 75.045 74.560 76.775 98.575 98.560 98.525 98.295 98.675 

1 73.135 71.430 68.645 65.020 62.360 98.245 97.310 95.220 91.795 87.500 

4 72.970 69.880 65.920 60.925 52.170 98.015 96.185 92.805 85.035 69.990 

10 72.585 69.435 65.445 59.675 51.400 98.210 96.320 92.585 84.295 65.690 

d=0.4

0 59.585 60.360 58.310 57.275 65.440 84.550 84.033 83.980 83.655 87.595 

1 57.260 54.915 50.580 45.750 47.220 82.075 78.960 73.370 66.905 62.915 

4 56.445 52.280 47.900 41.210 34.540 80.915 75.830 68.760 57.825 43.495 

10 56.015 52.550 47.090 39.795 32.495 81.220 75.770 68.880 56.640 38.915 

Table 4
Empirical Power ρ=0.95: tρ ^ Statistic

 
T=100 T=250

λ

σv/σu 0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9

d=0

0 32.710 32.410 33.220 32.465 32.725 73.745 73.205 73.145 73.665 73.535 

1 33.330 33.720 34.875 33.365 30.660 72.775 70.300 68.360 65.610 60.980 

4 33.755 35.785 37.495 39.370 36.535 71.725 69.580 65.270 61.505 54.365 

10 33.490 35.330 37.800 40.815 42.550 72.265 69.140 65.320 60.900 53.550 

d=0.2

0 34.115 33.660 33.500 33.415 35.065 74.125 73.685 72.555 76.005 74.640 

1 33.375 34.390 34.475 33.320 30.795 71.255 69.180 66.375 63.045 60.485 

4 33.215 34.990 37.185 37.860 35.180 71.020 67.695 63.040 58.495 50.930 

10 33.300 34.595 36.980 39.935 39.800 71.135 67.345 63.220 57.235 49.070 

d=0.4

0 30.165 29.060 26.385 26.170 32.570 54.340 54.020 52.915 53.225 61.400 

1 28.270 28.095 25.780 22.905 25.985 51.100 48.980 44.335 39.690 42.730 

4 28.335 27.555 26.575 25.260 23.215 50.945 46.700 41.080 34.780 30.140 

10 28.055 27.340 27.135 25.190 24.620 50.675 46.380 40.700 34.170 26.865 

The figures in Table 1 show the percentage of 
rejections of the null hypothesis H0, in the presence of 
variance break. They indicate that the empirical size 
tends to significant level of 5% when the magnitude 
of change points is zero. However, there is little over-
sizing with larger sample size. For example, as λ=0.3 
and σv/σu=10, the rejection frequency is 9.225% and 9.46% 
for T=100,250. 

It is also worth mentioning that as the magnitude 
σv/σu increases, the impact of broken variance is more 
pronounced, leading to over-sized test. The rejection 
rate in the case of d=0.2 and T=100, λ=0.5 are 6.41% for 
σv/σu=1 and 11.05% for σv/σu=4. Furthermore, with the 
increase of long memory index, the rejection frequency 
is gradually decreased. For example, if σv/σu=4, T=250 

and λ=0.7 are 13.835% for d=0 and 11.87% for d=0.2. 
This indicates that the extent of size distortions is heavily 
sensitive to the degree of changes and long memory index. 
Final with the change of the position of the change point, 
the rejection rate also changes. if d=0, T=100, σv/σu=10, 
λ=0.1,0.9, the rejection frequency is 6.375% and 22.99% 
respectively. 

Tables 2-4 show the power of the test. From these 
three tables, we can draw the following conclusions. First, 
the impact is more obvious in small samples, but in the 
large sample not have some impacts. For example, when 
T=100 λ=0.7, σv/σu=4, the rejection frequency is 88.125% 
and 67.35% for d=0.2,0.4. However, when ρ=0.8, T=250, 
λ=0.7, σv/σu=4, the rejection frequency is 98.95% and 
86.23% for d=0.2,0.4. Second, as the magnitude of change 



LI Yuanyuan; JIN Hao (2017). 
International Business and Management, 14(1), 64-69

69 Copyright © Canadian Research & Development Center of Sciences and Cultures

point increases, the rejection of the alternative hypothesis 
decreases gradually. For example, if ρ=0.8, T=100, λ=0.5, 
d=0.4, the rejection frequency is 81.855% and 77.05% for 
σv/σu=1, σv/σu=4. Third, with the change of the position of 
the change point, the rejection rate also changes. If ρ=0.8, 
d=0.4, T=100, σv/σu=10, λ=0.1 is 88.095% and λ=0.9 is 
46.17%. Final, with the increase of long memory index, 
the rejection frequency are gradually decreased. if λ=0.9, 
T=100, σv/σu=1, λ=0.1, d=0.2 is 73.135% and d=0.4 is 
57.26%.

CONCLUSION
The present study examined the unit root tests to long 
memory observations in the existence of variance breaks. 
The limiting distribution of the test statistics was derived, 
and Monte Carlo evidence on finite samples was provided. 
It is shown that the non-constant variance can both inflate 
and deflate the rejection frequency, thus the statistic tests 
are not robust. The simulation results also indicate the 
extent of size distortion is heavily sensitive to the location 
and magnitude of change points, long memory index and 
sample size. The experimental results are consistent with 
our theoretical results.
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