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Abstract
I will start with introducing the corporate bond and several 
important components of it. The existing credit risk 
model can be categorized into two groups — Structural 
(Firm Value) Model and Reduced-form (Intensity-
based) Models, followed by the risk measure and the 
risk measure—Value at Risk and its computation. Then 
I applied the previously introduced material to the given 
portfolio to calculate its credit VaR using two methods, 
S-critical and the Monte Carlo simulation. Finally, I 
present some advanced credit risk models with stochastic 
interest rate.
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1. INTRODUCTION
According to Bielecki and Rutkowski (2002) the definition 
of credit risk is given as the risk caused by any events 
related to credit. For example, changes in the credit rating 
and default events may lead to fluctuation in financial 
position. The actual loss depends on the amount at risk 
and the amount that recovered (Bielecki and Rutkowski, 
2002).

In order to look deeper into credit risk, I introduce two 
kinds of credit risk. Firstly, reference (credit) risk is the 

risk caused by the reference entity (third party) that plays 
an important role in the contract settlement, while both 
parties of the given agreement are assumed to be default-
free (Bielecki and Rutkowski, 2002). In order for the 
market participant to trade without this kind of risk, credit 
derivatives are introduced into the market. It is a financial 
instrument that transfers the reference risk between the 
counterparty. Secondly, the counterparty (credit) risk is 
that the counterparty of the agreement faces the default 
risk of other party (Segoviano and Singh, 2008). By 
carefully quantifying the counterparty credit risk, one 
can correctly measures the value of the contract such as 
vulnerable claims and defaultable swaps. The contract is 
said to be associated with one-side or both side’s default 
risk, depends on whether we consider the default event of 
one or both of the participants.

Generally speaking, as stated by Jorion (2007), credit 
risk is determined by three risk factors:

• Default risk: the risk of financial loss caused by the 
failure of counterparty to meet the obligation stated in the 
contract and is evaluated by the Probability of Default 
(PD)

• Credit exposure risk: the risk of fluctuation of 
the spot price of the counterparty and is evaluated by 
Exposure at Default (EAD)

• Recovery risk: the risk on the amount recovered after 
default and is measured by Loss Given Default (LGD)

In the following section, I will introduce corporate 
bonds, vulnerable claims and credit derivatives, which are 
financial instruments that closely related to credit risk.

2. CORPORATE BONDS
By issuing corporate bonds, the corporate has the 
obligation to pay a specific payment to the bond holder 
at a given date (maturity), stated by U.S. Securities and 
Exchange Commission (U.S Securities and Exchange 
Commission). Nevertheless, the default of the company 
may occur before the agreed date of payment. Thus, it 
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may fail to fulfil the condition of making the payment to 
the bond holder, who will endure the financial loss. Noted 
that the default event, usually caused by firm’s bankruptcy, 
is significative only if it occurs during the lifetime of the 
bond, i.e. before the maturity.

Defaultable claims, such as defaultable bond (or risky 
bonds) is the claim with possibility to default( Bielecki, 
2004). On the other hand, the default-free bond (or risk-
free bond or treasury bond) pays definitely the coupon and 
the notional price to the buyer at the expiration. Certainly, 
any bond holder exposes to some kind of risk. Here risk-
free refers to the risk of bonds with the highest credit 
quality (Bielecki and Rutkowski, 2002).

To be more specific, first of all, assume the notional 
price of the corporate bond is K units of cash, and the 
bond pays no coupon before the maturity time denoted by 
T. Then set the time t arbitrage price of T-maturity bond is 
DB (t, T). If the firm does not default before the maturity, 
then DB (T, T) = K. When K=1, let B (t, T) represent the 
time t price of a zero-coupon bond with maturity T, then 
obviously B (T, T) =1.

2.1 Recovery Rules
In general, recovery schemes stated the date and the 
payment to the bond holder given that the default event 
happens prior to the expiration date (Bielecki and 
Rutkowski, 2002). The amount of payment is normally 
defined by rate ϕ, implies that the underlying firm pays 
partial value of the bond to the counterparty given default. 
Moreover, the timing is also a significant factor. Usually 
the default firm makes the recovery payment either at the 
time when default occurs or at the previously specified 
date (Bielecki and Rutkowski, 2002).

If the payment is made according to rate ϕ and is made 
at the time of default, denoted as τ, then such scheme 
is called fractional recovery of par value (Bielecki and 
Rutkowski, 2002). Suppose that the price of the bond 
K=1, then the value of the T-bond at time t, denoted as 
B˜ϕ(t,T) is:

 
On contrast, if the payment is made at maturity, such 

scheme is called the fractional recovery of treasury value 
(Bielecki and Rutkowski, 2002), and the payoff is

 
In addition, instead of the notional value of bond at 

maturity, the fractional recovery of market value specifies 
that the holder receives partial pre-default price of the 
bond at time of default (Bielecki and Rutkowski, 2002). 
Therefore, the payoff at time T is:

where B(τ-, T) represents the spot price of the bond 

just before the default.
As mentioned before, normally the loss given 

default (LGD) can be used to measure the likely loss 
given default, implies that LGD is 1 − ϕ. (Bielecki and 
Rutkowski, 2002)

2.2 Cross Default and Default Correlation
Cross default is defined as “A provision in a loan 
agreement or other debt obligation stating that the 
borrower defulats if he/she goes into default on any other 
obligation.”1.

Now consider two defaultable claims A and B, whose 
lifetime intersect. Then let X be an indicator function of 
the event “claim A default”, i.e. X takes 1 if A default, and 
0 otherwise. Similarly, Y can be defined as the indicator 
function of event “claim B default”. According to David 
X. Li (1999), the default correlation between A and B 
is equivalent to the correlation coefficient between the 
random variable X and Y.

2.3 Vulnerable Claims
Vulnerable claims are the contingent agreement traded 
between parties that have the possibility to default. As a 
result, each party faces the risk that another participant 
may default, deduced that the default risk plays an 
important part in valuation of vulnerable claims (Bielecki 
and Rutkowski, 2002).
2.3.1 Vulnerable Claims with One-side Default Risk
Stated by Johnson and Stulz(Johnson and Stulz, 1987), 
the payoff of Vulnerable European Option, which is one 
of the major examples of vulnerable claims with one-
side(unilateral) default risk, is dependent of the default 
of the underlying party occurs by the maturity and is 
irrelevant to the default of the holder.

For example, for a non–defaultable U-maturity zero-
coupon bond, with expiration T<U , the price of the bond 
is represented by ND(T, U) and the exercise price is L. 
Then payoff of the European call option ECT at exercise 
date T is
 ECT = (ND(T,U) − L)+                                     

(2.4)

Let τ denotes the time of default of the call writer (τ ≤ 
T), and ϕ denotes the recovery rate. Then the payoff of the 
claim is:

 
(2.5)

Generally, for a defaultable bond with price DB(T, 
U) and strike price L, the value of the call option can be 
interpreted as

ECT = (DB(T,U) − L)+

Similarly, the payoff of the claim is
(2.6)

1　 http://financial-dictionary.thefreedictionary.com/Cross-Default
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(2.7)   (Bielecki and Rutkowski, 2002) 
(Johnson and Stulz, 1987)

2.3.2 Vulnerable Claims with Two-side Default Risk
Vulnerable claims with two-side(bilateral) counterparty 
risk are the contracts that both parties are exposed to 
counterparty risk, stated by Bielecki and Rutkowski 
(2002). The prime example is defaultable swap, which 
is a swap agreement between two defaultable parties. 
Comparing to default-free swap, the recovery rules at the 
default time will greatly affect the valuation of defaultable 
swaps (Bielecki and Rutkowski, 2002).

2.4 Credit Derivatives
Credit derivatives are the tool that is designed to transfer 
the risk related to credit to a third party, in order to 
prevent financial loss of the borrower or the lender. In 
this section, I will introduce the three prime examples: 
forward contract, default swaps and options(Hull, 1993).
2.4.1 Forward Contracts
Forward contract gives the obligation for the buyer to 
purchase a specific amount of some product at an agreed 
price at a future date. This kind of contract avoid the risk 
that the other might not fulfill the contract. For example, 
one can buy a forward contract for pound in order to 
eliminate the exposure to exchange rate risk(Hull, 1993).
2.4.2 Default Swaps and Default Options
Default swaps and options (or default insurance and 
protection) can be taken as insurance contract for the 
default event. According to Bielecki and Rutkowski 
(2002),

“In these agreement, periodic fixed payment (for a default swap) 
or an upfront fee (for a default option) from the protection buyer 

is exchanged for the promise of some previously agreed payment 
from the protection seller to be made only if a particular credit 
event happens.”

If the specified credit event happens before the contract 
expiration, the protection seller makes payment to the 
buyer to cover the loss. Otherwise, the obligations of both 
sides terminate at maturity.

Here are some most important components of default swaps/
options (Bielecki and Rutkowski, 2002):

• The definition of “default”: for example, it may 
include bankruptcy, payment default or downgrade of 
credit rating.

• The contingent default payment: it may affected by 
the price fluctuation of the underlying security or it can be 
a fixed amount stated at the contract.

• The specification of periodic payment: it is greatly 
affected by the credit quality of the security.

For standard default swaps or options, let T denotes 
the maturity time, and L represents the face value of a 
defaultable zero-coupon bond with expiration date U ≥ T. 
The recovery payment is made at time of default τ. For a 
default option, the protection buyer makes the payment of 
a premium at the start of contract, and the price at τ is

(L − D(τ,U))+1{τ≤T} (2.8)
This kind of contract is defined as default put option 

(Bielecki and Rutkowski, 2002). Due to the upfront 
payment made by the long party, i.e. the protection buyer, 
the buyer’s credit quality has no relevance in the contract.

For default swap, at times Ti, i=1,...,m before τ or 
expiration date given that default has not occurred, an 
annuity (credit swap premium) is paid by the protection 
buyer. In case of the buyer, the payoff of the default swap 
is:

 

Where κ is the amount of annuity payment. (Bielecki 
and Rutkowski, 2002). The following graph shows the 

movement of credit risk between the protection buyer and 
protection seller of credit default swap.

Figure 1
Credit Default Swaps
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3. MODELS OF CREDIT RISK
3.1 Structural Models
For structural models, the major question is the valuation 
of capital structure, cited by Wang(2009)(Wang, 2006). In 
this case, the firm’s liabilities are considered as contingent 
claims, compared with the value of firm’s assets. As a 
result, the structural approach is also referred to as firm 
value approach or the option-theoretic approach (Bielecki 
and Rutkowski, 2002).

The default event is defined by the changes of total 
value of the firm’s asset, denoted by V, and the default 
barrier. In other words, the firm’s ability to fulfil the 
obligation stated on the contract is assumed to be solely 
depend on the value process Vt. In structural models, the 
default event is triggered if the firm’s value is less than the 
default triggering barrier (Bielecki and Rutkowski, 2002).

One of the disadvantages of the structural approach 
is that it is designed under the assumption that the value 
of the firm can be directly determined. In addition, this 
model is valid provided that the firm’s value is represented 
by securities with high liquidity(Wang, 2006).
3.1.1 Defaultable Claims
Firstly, we specify a date T∗ > 0, and assume that the 
probability space (Ω, F, P) is adapted to filtration F. Then 
I introduce the following notations:

• r: the interest rate process
• V: the firm’s value process
• v: the barrier process, determining the time of default
• X: the promised contingent claim, which represents 

the firm’s liabilities before T ≤ T∗
• A: promised dividends
• : the recovery claim, which is the recovery payment 

at the maturity T if default occurs by T
• Z: the recovery process, which is the payoff at default 

time given that the default occurs by maturity date
• P: practical probability measure
• P∗: the risk-neutral probability
•τ: τ=inf(t > 0 : Vt < vt)
If the default does not occur by expiration T, the 

agreed contingent claim X will be paid. Otherwise, the 
claim holder receive either Zτ at time of default τ or at the 
expiration T (Bielecki and Rutkowski, 2002).
3.1.2 Merton’s Firm Value Model
The classic structural model—Merton’s approach 
focuses on a firm with a single liability of delivering the 
previously agreed amount K. According to Jeanblanc 
(2006)( Bielecki, Jeanblanc and Rutkowski, 2006), 
following are some fundamental assumptions of this 
model:

• market participant can trade continuously
• All traded assets are infinitely dividable
• Trading of capital is at the identical interest rate r
• No limitation on the short-selling of assets
• No transaction loss and taxes

• The bankruptcy and reorganization costs in case of 
default are neglected

Suppose that the interest rate r is deterministic. As 
a result, the price at time t of the non–defaultable zero-
coupon bond with expiration T and terminal payoff 1 
is B(t,T) = e−r(T−t). Let E(Vt) and D(Vt) represent 
the amount of the firm’s assets and liabilities at time t 
respectively, inferred that the firm value is Vt = E(Vt) 
+ D(Vt). Moreover, we suppose that under the spot 
martingale measure P∗, the firm’s value process is driven 
by the geometric Brownian motion,

where σ is the deterministic volatility. If the constant 
κ is non-negative then it represents the payout ratio, 
otherwise it stands for an inflow of money to the firm. 
W∗ is the one-dimensional Brownian motion under P∗, 
adapted to filtration F.

To be more specific, at the time of maturity, if the total 
value of the firm’s asset VT falls below the face value of 
the liability, the firm defaults and the claim holder can get 
the amount VT ( Bielecki, Jeanblanc and Rutkowski, 2006). 
Otherwise, default event does not occur and the debt is 
paid in full. Hence it is a defaultable claim with recovery 
at maturity. In terms of the notation of defaultable claim, 
we can deduce that ( Bielecki, Jeanblanc and Rutkowski, 
2006) X = K, A = 0, = VT , τ = T1{VT<K} + ∞1{VT≥L}

The terminal payoff (firms debt) 
at maturity T is

As a result, the liability at time t is

Where Pt = B(t,T)(K −VT )
+ , which is a put option 

known as put-to-default, and D(t, T) is the value of the 
defaultable claim. Consequently, the firm’s equity is
E(VT ) = VT − D(VT ) (3.6)
= VT − min{VT ,K} (3.7)

= (VT − K)+ (3.8)

(Bielecki, Jeanblanc and Rutkowski, 2006) Thus, in 
this case, the firm’s equity can be taken as a call option on 
the firm’s assets with exercise price K. Using the Black-
Scholes formula(Nielsen, 1992) for the price of put option 
gives

Pt = KB(t,T)N(−d2(VT ,T − t)) − VtN(−d1(Vt,T − t)) (3.9) 
Where for every t [0, T]

 

(3.10)
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the price of the defaultable bond can be represented as

(Breccia, 2012)
3.2 Reduced-form Models
The reduced-form approach models the unpredictable 
random default time or other credit events, stated by 
S.Rachev(Rachev, 2009). While the default event in 
structural models is triggered when the firm value is 
smaller than the barrier, on contrast, the price of the 
company is not considered for the intensity-based model 
(Rachev, 2009). In addition, the structure of the liabilities 
is not important for this model.

First of all, set a probability space(Ω,F,Q∗) with a 
d-dimensional standard Brownian motion Wt

∗, where t 
[0, T∗], for some time horizon T∗ and F is the filtration. 
Suppose the interest rate r is F–measurable.

The main problem is to construct the default time τ. 
We introduce a non-decreasing and F–measurable process 
Ψ, and a strictly positive random variable η with the 
cumulative distribution function F : F(x) = Q∗{η ≤ x} 
for . Therefore, time of default τ is defined as (Bielecki 
and Rutkowski, 2002)

       (3.13)

4. RISK MEASURE
4.1 Approaches to Risk Measurement
The existing methods to evaluate the risk can be classified 
into four groups: the notional-amount approach, factor-
sensitivity measures, risk measures depend on the loss 
distribution and risk measures based on scenarios. The 
well-established criteria for evaluating a risk measure are 
the coherence, and such risk measure is called coherent 
risk measure. To be more specific, I will present an 
example of such measure, the expected shortfall.
4.1.1 Notional-amount Approach
According to Mcneil, Frey and Embrechts(2005)(Mcneil, 
Frey, and Embrechts, 2005), it is the initial approach to 
risk measurement and it defines the risk as the summation 
of the face values of the assets in the portfolio, with 
each factors is of certain weights given by the risk of the 
respective asset.

The advantage of this approach is its simplicity. On 
the other hand, the approach does not distinguish between 
long and short position, i.e. the risk of long or put are 
considered to be the same. In addition, it does not reflect 
the benefit of diversified investment. Finally, there may 
be large differences between the notional amount and the 
economic value(Mcneil, Frey, and Embrechts, 2005).
4.1.2 Factor-sensitivity Measures
It measures the risk by the predetermined changes in a risk 

factor and the changes in portfolio value, usually it takes 
the form of derivative (known as the “Greeks”). The main 
drawback is that it cannot measure the overall risk of a 
given position. To be more specific, it is not reasonable to 
add up the risk driven by different factors (Mcneil, Frey, 
and Embrechts, 2005).
4.1.3 Risk Measures depend on Loss Distribution
It is the most developed measure which depends on 
the conditional or unconditional loss distribution of the 
portfolio over a given time interval (Mcneil, Frey, and 
Embrechts, 2005), e.g. Value at Risk (VaR).

Since loss is the most important factor of risk 
management, it is a very functional approach when 
making financial decision. Moreover, we can compare 
different portfolio easily by evaluating the loss.

On the contrary, due to the fact that most estimation 
for loss distribution are based on the historical data, if 
there is some big changes in the financial market, the 
estimation may be invalid. Even if the environment 
remains unchanged, it is very complicated to simulate the 
loss distribution accurately (Mcneil, Frey, and Embrechts, 
2005).
4.1.4 Scenario-based Risk Measures
In this approach, the risk is measured by considering 
changes in some risk factors and the formal description 
given by Mcneil, Frey and Embrechts (2005) (Mcneil, 
Frey, and Embrechts, 2005) is as followed:

Specify a set X = {x1,...,xn} representing the factor that 
closely related to risk and a vector w = (w1,...wn) denoting 
the weights with wi [0,1] for all i. For a portfolio of risky 
securities and with corresponding loss operator l[t], the risk 
is computed as
 φ[X,w] = max{w1l[t](x1),...,wnl[t](xn)} (4.1)

The core of this approach is to determine the 
appropriate set of scenarios and weights (Mcneil, Frey, 
and Embrechts, 2005).

4.2 Coherent Risk Measure
Risk measure is of great significance when making 
decision for investment. Therefore the choice of risk 
measure is very important. we first write down a list of 
criteria for a good risk measurement ψ (Haugh, 2010) 
(Jorion, 2007).

• Monotonicity: if V1 ≤ V2, then ψ(V1) ≥ ψ(V2). Namely 
the portfolio with lower return has greater risk.

• Translation invariance: ψ(V + k) = ψ(V ) − k. Adding 
k units of cash to a portfolio should lower the risk by k

• Homogeneity: ψ(bV ) = bψ(V ). Increasing the size of 
the portfolio by b should scale its risk by the same scale
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• Subadditivity: ψ(V1 + V2) ≤ ψ(V1) + ψ(V2). Merging 
portfolios cannot increase risk.

Risk measure satisfying the above condition is called 
coherent risk measure.

4.3 Expected Shortfall
For some increasing function T: R → R, the generalized 
inverse function T−1 is defined as

Then the quantile function of F is

For loss L with mean E() < ∞ and probability 
distribution FL, the expected shortfall at confidence level 
α is

where qu(FL) = FL
−1(u) is the quantile function of FL. 

Furthermore, the expected shortfall is a coherent risk 
measure(Mcneil, Frey, and Embrechts, 2005).

5. VALUE AT RISK
Value at Risk (VaR) is a risk measure depending on 
current position. Since it describes the risk by a single, 
easy-to-understand number, VaR has become an important 
tool for conveying trading risk to shareholder and senior 
manager. It associates with two quantitative factors, time 
horizon and the confidence level. The formal definition of 
VaR given by Mcneil, Frey and Embrechts(2005)(Mcneil, 
Frey, and Embrechts, 2005) is as followed :

Given some confidence level α [0,1]. The VaR of the 
portfolio at the confidence level α is the minimum value l 
such that the probability of loss L exceeding l is smaller or 
equals to (1 - α). Mathematically,

In other words, VaR is the quantile of the loss 
distribution. 

In addition, the expected shortfall is related to VaR as

However, the VaR of confidence level α cannot tell 
how severe the losses can be with probability lower 
than 1 − α. Furthermore, the VaR does not satisfy the 
last condition of coherent measure, the subadditivity. To 
be more specific, the short option positions can create 
large losses with a low probability and hence have low 
VaR yet combine to create portfolios with larger VaR 
(Jorion, 2007). Thus it contradicts with our observation 
that diversification of investment is an effective way to 
manage risk. Specifically, if the data is fitted by normal 
distribution, VaR is coherent. By the Central Limit 
Theorem (Hazewinkel and Michiel, 2001), which stated 
that the sum of independent random variables converges 
to a normal distribution, we can deduce that VaR is a 
coherent risk measure at the highest level of financial 
institution (Jorion, 2007).

Basically, there are two approaches to compute 
VaR, either by considering the actual empirical 
distribution (nonparametric) or by adapting a parametric 
approximation (parametric). To be more specific, the 
former method derived VaR by sample quantile and the 
latter approximate it by standard deviation.

5.1 Nonparametric VaR
Firstly, introduce the following notation:

• W0: the initial investment
• R: rate of return
• W = W0 (1 + R)
•µ: excepted return of R
•σ: volatility of R

• W∗ = W0(1 + R∗): the lowest portfolio value at the 
given confidence level α

The relative VaR is defined as (Jorion, 2007)
V aR(mean) = E(W) − W∗ = −W0(R∗ − µ)
And the absolute VaR is (Jorion, 2007)
V aR(zero) = W0 − W∗ = −W0R∗

If the time horizon is short, there may be little 
difference between E(W) and W0, and both method will 
give similar results.

More generally, let the probability distribution of the 
future portfolio value be f(w), then

The number W∗ is also known as quantile of the 
distribution, which is the cutoff point with a fixed 
probability of being overstepped (Jorion, 2007).

5.2 Parametric VaR
If the probability distribution can be categorized into a 
parametric family, the VaR can be calculated using the 
standard deviation multiplying with a factor that computed 
by the confidence level. As stated by Jorion (2007), we 
use normal distribution N(µ,σ2) to fit the data, then set

W∗ = W0(1 + R∗)
Normally, R∗ is negative, so it can be written as −|R∗|. 

Let z be standard normal deviate, and

  (5.1)

Equivalently,
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             (5.2)

where N is the probability density function of standard 
normal distribution. By the inverse function of normal 
distribution, z can be computed. Then the cutoff return is 
given as
 R∗ = −|R∗| = −zσ + µ (5.3)

Provided that all the uncertainty is contained in σ, this 
method can be generalized to other distributions (Jorion, 
2007).

5.3 Portfolio VaR
Computation for the VaR of financial instrument with 

single risk factor has been discussed previously. Now 
we consider more general case - the financial instrument 
with many risk factors, i.e. the portfolio risk. A portfolio 
can be described as a combination of certain number 
(N) of constituent assets. If there is no trading over 
the selected time horizon, i.e. the position remains the 
same, the portfolio rate of return is a linear combination 
of the rate of return(Ri) of the underlying assets, where 
the weights(xi) are given as the percentage of initial 
investment to each asset (Kondapaneni, 2005).

Then the excepted return of the portfolio is

The variance is

If all individual securities are normally distributed, 
then the portfolio return, which is an linear combination of 
normal random variables, also follows normal distribution 
with mean µP and variance σP

2. Assume that the probability 
of observing a loss worse than -z is α, and let W denotes 
the initial portfolio value, then the VaR of the portfolio is
 V aRP = zσP W (5.9)

For risk management, we can control the risk by lower 
correlations or larger amount of assets (Jorion, 2007).

5.4 Delta-Normal Valuation
Let Vt be the value of assets and St be the risk factor, and 
linear function V:R→R is a mapping from S to V, and
V0 = V (S0)

In addition, define ∆t as the first partial derivative, 
which is equivalent to the changes in value subject to the 

fluctuation in prices, evaluated at the current position V0. 
This is known as ∆ for a derivative for a fixed-income 
portfolio. The potential loss in value is then calculated as

  (5.10)

where dS is the potential change in prices. Since Vt and 
St are linearly dependent, if it is normally distributed, the 
portfolio VaR can be computed as

where V aRS is the VaR for the underlying risk factor, 
z is the standard normal deviate for a given confidence 
level, and σ is the variance of the given portfolio (Jorion, 
2007).
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Figure 2
Distribution with linear exposures

5.5 Delta-Gamma Approximation
Delta-normal approach is not applicative in the situation 
when the value and the risk factor are non-linearly 
dependent. For example, consider a long position in a 

call option. Although it is not linearly dependent, but we 
can still describe the relation easily since it’s a monotonic 
transformation.

Figure 3
Transformation of distribution (Jorion, 2007)

The above graph shows how the risk factor distribution 
can be transformed into the distribution of the option 
value. The c quantile of V can be calculated by the c 
quantile of S. The worst loss for specified confidence level 
is S∗ = S0 −ασS0. Due to the monotonicity of the mapping 
function V, VaR can be computed as
 VaR = V (S0) − V (S0 − ασS0) (5.12)

Now consider the dynamics of valuation function, 
using Taylors expansion(Weisstein, 2004), we can extend 
the above delta-normal method with higher order terms

 

(5.13)
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(5.14)
where ∆ and Γ are the first and second derivatives of 

the portfolio value respectively, and Θ is deterministic 
time drift. Then the VaR can be represented as (Jorion, 
2007)
 V aR = V (S0) − V (S0 − ασS0)         
(5.15)
 

 

(5.16)

  

(5.17)

More generally, this formula is applicable to long 
and short positions in call and put options, and all other 
valuation function V that is monotonic to S (Jorion, 2007).

Nevertheless, this method cannot be applied to 
the situation when the payoff and the price are non-
monotonic. To be more specific, one of the example is the 
long straddle, which is a strategy to purchase the call and 
put option on the same equity with identical expiration 
and exercise price (Jorion, 2007). Consequently, the trader 
will suffer the greatest loss if the price remains the same, 
demonstrating by the following graph:

Figure 4
Long Straddle

In this case, it is inadequate to evaluate the price at 
the extreme value. Thus we need to use the full-valuation 
approach which considers all the intermediate value and 
the profit or loss (negative profit) is given as (Jorion, 
2007)
 dV = V (ST ) − V (S0) (5.18)

Where the price ST can be simulated by the Monte 
Carlo method. This method is potentially more accurate 
and the VaR is computed as the percentiles of the loss.

5.6 Monte Carlo Method
Due to its flexibility, monte carlo simulation is widely 
used in financial institutions to value complex derivatives 
and measure risk. However, this approach requires costly 
investment in intellectual and systems development 
(Kondapaneni, 2005).

“The basic concept behind the Monte Carlo approach is to 
simulate repeatedly a random process for the financial variable 
of interest covering a wide range of possible situations.” (Jorion, 
2007)

These variables are driven by the probability 
distribution under our assumption. Hence by repeating 
the simulation, we can recreate the entire distribution of 
portfolio values, which leads to VaR.
5.6.1 Simulating a Price Path
In this section I focus on the simplest case with only 
one random variable. Geometric Brownian Motion 
(GBM) model is one of the most widely-used models 
for option pricing. This model supposes that the price 
has independent increment in different time interval and 
(Jorion, 2007)
dSt = µtStdt + σtStdWt                                                (5.19)

where Wt is a brownian motion. The process is 
geometric since all parameters are multiplication 
of current price St. The parameters µ t and σ t are the 
instantaneous drift and volatility respectively, which we 
assume to be deterministic constants.

Firstly, we introduce this method by a simple 
simulation. Practically, we can divide the path into lots of 
small time interval, then the process can be computed as 
discrete moves of size ∆t. Let t and T be the present time 
and the expiration time respectively, and set τ = T − t as 
the VaR time horizon. To generate series of simulation of 
St, we divided τ into n intervals, with ∆t=. Integrating over 
a finite interval gives

)         (5.20)

where  is a standard normal random variable with 
mean 0 and variance 1. This process has mean E() =t, and 
variance Var()=. For simulation of the price path, starting 
from St and generate a sequence of () for i = 1,2,...,n. Then

)                 (5.21)
And St+2 can be computed similarly. Generally,

)       (5.22)

For 0 ≤ i ≤ n − 1 and T = t + n.
Now we adapt a more complex and accurate simulation 

given by J.Armstrong(2015)(Armstrong, 2015), which 
I will use for the calculation for Part 2. Solving the 
stochastic differentiate equation (SDE) given by the 
assumption
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Gives

where log(S0) is a deterministic constant. Assume

Therefore, we can deduce that st is a Geometric Brownian motion which is normally distributed with mean and 
variance σt

2t.
Proof: As t is deterministic quantitive factor and Wt is standard Brownian motion.

Then we get,

 

(5.33)

For small time interval,

where the last approximation is deduced by Central 
Limit Theorem(Hazewinkel and Michiel, 2001). Then

 

(5.34)
Then we can get the price path simulation of St

St = est (5.35)
where  is a standard normal deviate. Therefore, to 

simulate the price path, we only need to generate a 
sequence of standard normal deviate and then substitute 
into the above equation to get the stock price for each 
step(Armstrong, 2015).
5.6.2 Creating Random Numbers
To generate a normally distributed deviate, as stated by 

Kyng and Konstandatos (2014) (Kyng and Konstandatos, 
2014), firstly, we use the uniform distribution over 
the interval [0, 1], to generate a random variable x. 
Then transform the random number x into the desired 
distribution by the inverse of cumulative probability 
distribution function. By definition, the cumulative 
function N(y) lies in the interval [0, 1] which coincides 
with the interval of random number x. For example, to 
generate a normally distributed random variables y, we set 
x = N(y), then y = N−1(x).
5.6.3 Computation of VaR
Given the simulation of price path, the VaR can be 
computed as follow (Jorion, 2007):

• Determine the stochastic price process and its 
parameters

• Generate a sequence of random variables, and then 
compute the sequence of price St

• Compute the value of the portfolio Vt+n = VT using the 
sequence of price

• Repeat the previous two steps as many times as 
possible, e.g. set K=10000000

• Compute the mean E(VT ) and the quantile Q (VT , α) 
of these K observations of VT , and VaR is given by
V aR(c,T) = E(VT ) − Q(VT ,α) (5.36)

Alternatively, after simulating the price path, instead 
of the value (V), we can compute the loss using the price 
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path directly. In this case, the VaR is the quantile of the 
loss computed by these K observation(Crouhy, Galai and 

Mark, 2000). The following graph explains the above 
procedure pictorially.

Figure 5
Monte Carlo Simulation (Jorion, 2007)

6.  ANALYTICAL AND NUMERICAL 
APPLICATION
I use two methods to calculate the credit VaR of the 
given portfolio that long two call options and short one 
put option on the same equity stock. The first method 
is S-critical and the second is Monte Carlo Simulation. 
The former method is much quicker and can avoid the 
simulation, but it can only be applied to special cases for 
ρ=-1 or 0 or 1. The latter method is the most powerful 
among the existing simulation tools and it can be applied 
to general case for any ρ between -1 to 1, while it is very 
time consuming for very large amount of simulation 
which determines the accuracy.

6.1 Method 1(find the critical value of St)
Generally speaking, I compute the quantile of the 
underlying stock price Scrit first, using the correlation 
between St and Vt, and then substitute Scrit into the function 
that maps from St to portfolio value, which leads to loss 
and VaR.
6.1.1 ρ = 0
By definition (Jorion, 2007),

(6.1) and (6.2)
where L represent the loss. When the correlation 

coefficient between the Brownian motion driving 
underlying stock price and counterparty firm value is 
zero, the random variable(r.v) portfolio value P and 
counterparty firm value Vt are independent. Therefore,

(6.3)

(6.4)

 (6.5)

The dynamics of the counterparty firm value under 
physical measure P is given as

 (6.6)

V (0) = 1, µv = 0.1,σv = 0.4005 (6.7)
where  is the Brownian motion under P. Solving the 

above stochastic differential equation (SDE) gives

 

(6.8)
As a result, the probability of counterparty default is
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Similarly, solving the SDE for underlying stock price

gives

 (6.13)

Let the mapping function from price St to portfolio value Pt be 
g : R → R, Pt = g(St) = 2BSC(St) − BSP(St)

where BSC and BSP are the price of the Call and Put option respectively, using the Black Scholes 
Formula(Nielsen, 1992) gives

which gives an equation
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Substitute Scrit into the equation for Portfolio value gives

By substituting all the numbers into the above equation, I found that when ρ = 0, VaR = 52.1535

6.1.2 ρ = 1
For correlation coefficient ρ = 1, we can say that and let . Then by equation (6.9), we get

let

then A is a deterministic constant. Then we can compute Scrit and therefore V aRα

and finally,

By substitution, I found for ρ = 1, V aR = 0
6.1.3 ρ = −1
If the ρ = −1, we can assume .

Since α=0.01, max{N(A), N(B)}=N(B). Then
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and finally,

Similarly, in this case I computed that for ρ = −1, VaR = 124.2145

6.2 Method 2(Monte Carlo Simulation)
Alternatively, there is another method to compute VaR. For the given portfolio, the price is given as
Portfolio = 2BSC − BSP

where BSC and BSP are the Black Sholes formula(Nielsen, 1992) for call and put option respectively, given as 
followed:

BSC = SN(d1) − Ke−r(T−t)N(d2) (6.46)
where

                                    (6.47)

The price of a corresponding put option based on putcall parity(Nielsen, 1992) is:

In this case, we only need the payoff at time t = one year. So for the Monte Carlo simulation, we only need one 
time interval = one year. Therefore, we can generate a large amount of standard normal deviate and substitute into the 
equation

which gives the simulation for ST . By substituting ST 

into the Black Scholes Formula, we get the price for the 
portfolio at one year time.

For the counterparty, we can use the same method to 
simulate the firm value, and the default event is triggered 
by the barrier D. If the counterparty does not default by 
one year, then there is no financial loss due to credit risk. 
Otherwise, if the portfolio value is positive, the loss is 
the positive value of the portfolio, while if the portfolio is 
negative, there is no loss. So the loss is given by

LossCR1y = 1{V1y<D}(Portfolio)+

Furthermore, for the correlation coefficient ρ between 
the Brownian motion driving the underlying stock price 
and the counterparty firm value, we need to use the 
Cholesky Decomposition(Haugh, 2004). Firstly, generate 

two uncorrelated standard normal variables Z1 and Z2. Let 
X1 = Z1 and X2 = , then the correlation coefficient between 
X1 and X2 is .

I compute the credit VaR of the given portfolio using 
Monte Carlo and the procedure is as followed:

• Use standard normal (s.d) generator function to 
generate a pair of s.d deviates (W1, W2)

• Use Cholesky Decomposition to get a pair of s.d 
deviates (Z1, Z2) with correlation ρ

• By Monte Carlo simulation, substitute the above pairs 
of s.d deviate (Z1, Z2) into the equation to get a sequence 
of simulation of underlying stock price St and counterparty 
firm value Vt.

• Substitute S1 into the Black Scholes Formula to get 
the value of put (BSP) and call option (BSC) on the stock. 
The portfolio value is given as Portfolio = 2BSC − BSP.
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• Find the loss due to counterparty default for each simulation. The Loss is given as

• Repeat above steps by K=10000000 times, then we 
get 10000000 simulations for the loss. Use the “prctile” 
function, we can get the VaR.

For different correlation coefficient between the 
Brownian motion driving the underlying stock price and 
the counterparty firm value, we can repeat the above 
procedure but use different ρ to generate the s.d (Z1, Z2)

Using Monte Carlo simulation for the price path, I got 
the result as followed:

• For ρ = -1, V aR = 124.2442
• For ρ = 0, V aR = 52.1036
• For ρ = 1, V aR = 0
which agrees with the result computed by method 1.

6.3 Numerical Analysis for the case ρ = 1 or -1
I surprisingly noticed that when ρ = 1, the VaR is 0, i.e. 
there will not occur any loss theoretically. The reason is 
that when ρ = 1

Then we can get

Therefore, we can observe that St and Vt has positive 
correlation. In this case, St obtain its extreme value for 
maximum Vt. Given that the counterparty default, the 
maximum value of Vt is D = 0.55. Hence, by substituting 
into the above equation, max(St) = 78.0022 and the 
portfolio value is -12.0832, indicated that the maximum 
value of the portfolio is negative. Thus there is no loss due 
to counterparty default, which verifies my result.

Similarly, for ρ = −1, St can be represented in terms of 
Vt:

6.4 Complete Correlation Pattern Between the 
Brownian Motion Driven Underlying Stock Price 
and Counterparty Firm Value
Furthermore, I can compute the VaR using any correlation 
coefficient by Monte Carlo Simulation. I divided [-1,1] 
into 20 intervals and calculate the VaR using the starting 
point of each interval as the correlation coefficient. Then 
I plot the graph between the correlation coefficient ρ and 
VaR. The result can be shown by the following plot

Figure 6
Correlation coefficient–VaR

Therefore, as shown above, if the correlation 
coefficient between the Brownian motion of underlying 
stock price and counterparty firm value increases, the 
VaR will decrease, i.e. they are negatively dependent. 
When finding a cooperation partner, the underlying equity 
should prefer the firm with positively larger correlation to 
itself.

7 .  A D V A N C E D  M O D E L S  W I T H 
STOCHASTIC INTEREST RATES 
7.1 Cox–Ingersoll–Ross Model
First of all, I will introduce the model interpreted by Cox, 
Ingersoll and Ross(CIR) in 1985(Cox and Ross, 1985). 
The basic assumption of this model is that under the risk-
neutral measure Q, the short-term interest rate r satisfies 
the following equation:
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where a, b, σ and r0 are deterministic quantitative 
factors, where a(b − rt) is the drift term and  is the 
volatility. Since for short term, when rt goes to zero, the 
volatility term  tends to zero, avoiding the affection of 
randomness. In this case, it is impossible for the short term 
interest rate r to be negative(Haugh, 2010). According to 
Zeytun and Gupta, following the CIR model, the time t 
value of the zero-coupon bond with maturity T is:

Where

7.2 Kim, Ramaswamy and Sundaresan Approach
According to Kim Ramaswamy and Sundaresan(1993)
(.Ramaswamy and Sundaresan, 1993), the dynamics of 
short-term interest rate is

where  is a standard Brownian motion under the spot 
probability measure P∗. The model with such interest rate 
dynamics is referred to as the CIR term structure model 
(Bielecki and Rutkowski, 2002). We suppose that the risk 
premium for the interest rate risk is zero. Consequently, 
the short-term rate dynamics under the risk-neutral 
probability measure P∗ and practical probability measure 
P are identical. And the value process is assumed to be 
driven by the following SDE:

 
(7.9)

where the Brownian motion W∗ and  are correlated with 
coefficient ρV r.

In this case, the bond contract prohibits the stockholder 
from selling the firm’s assets to pay dividends. The 
bondholder must continuously pay a coupon at the rate 
of c units of currency per unit of time. The firm defaults 
before the maturity T if it cannot make the coupon 
payment, and it occurs when the stock value falls below 
the barrier  . To be more specific, the barrier  is the 
breakeven point such that if Vt = , the dividends equals the 
coupon payment and if Vt < , the dividend is not sufficient 
to cover the coupon payment.

As a result, we can assume that the initial value . 

Given that the firm does not default before maturity, then 
if the price of the firm at the maturity date is lower than 
the notional amount K, the firm is default at the maturity 
(Bielecki and Rutkowski, 2002). Let NDc(t,T) = NDc(t,T,rt) 
denotes the price at time t of an non–defaultable bond 
with continuous payment c per unit time, and the face 
value K at time T. Then the payoff to the bondholder is 
the minimum between the firm value Vt and the recovery 
claim (T − t)NDc(t,T)(.Ramaswamy and Sundaresan, 
1993).

R e p r e s e n t  i t  i n  t e r m s  o f 
d e f a u l t a b l e  g i v e s :  X  =  K ,  A t  =  c t ,  Z  = 

 
where  is a deterministic function with (0) = 1, 
representing the recovery rate, and the default triggering 
barrier v is

In financial industry, the bankruptcy cost is Vτ − (T − τ)
NDc(τ,T)

The drawbacks of this model are the complicated 
expression of the triggering barrier and that practically, 
the volatility of a zero-coupon bond does not follow a 
deterministic function (Bielecki and Rutkowski, 2002).

7.3 Briys and de Varenne Approach
The Briys and de Varenne approach(Briys and Varenne, 
1997) is a special case of the Black and Cox model with 
stochastic interest rate. The dynamics of the the interest 
rate under this model given as

(7.10)
where a(t), b(t), σ(t) : [0,T] → R are deterministic 

functions. Consequently, the price of a non-defaultable 
zero-coupon bond is

(7.11)
for some deterministic function b(·,T) [0,T] → R. The 

value of the firm is defined by

(7.12)

where σv > 0 is a deterministic quantitative factor, and  
are mutually independent Brownian motions, and ρ = ρV,r 

is the correlation coefficient between the interest rate and 
the firm’s value.

The default barrier is
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where K is the notional amount at time T and k is a 
constant with 0 < k ≤ K. 

And the default time is

   

（7.13)

The payoff to the bondholder given default is defined as

w h e r e  β 1  a n d  β 2  a r e  t h e  r e c o v e r y  r a t e  a t 
default for τ < T and τ = T respectively. In terms 
of  defau l tab le  c la im,  the  above  model  can  be 
represented as  (Bielecki  and Rutkowski ,  2002) 
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