Thermal Pyrolysis of Polyethylene: Kinetic Study

Elham Khaghanikavkani, Mohammed Mehdi Farid

Abstract


Thermogravimetric analysis (TGA) was used to measure the kinetic parameters of high density polyethylene in different operating conditions i.e. heating rate and nitrogen flow rate in a non isothermal condition. The Coats-Redfern method was used to calculate the kinetic parameters. An effort was made to investigate the effect of metal particles on plastic during pyrolysis. The results suggested that aluminum powder accelerates the pyrolysis reaction by enhancing the heat transfer. In addition, the kinetic reaction of pyrolysis was studied using a semi-batch reactor in a nitrogen atmosphere under isothermal and non-isothermal conditions. A first-order decomposition reaction was assumed and the rate constant was determined using an integral method. The rate constant was measured at different temperatures and was used to calculate the apparent activation energy and the pre-exponential factor of the reaction in an isothermal condition. Kinetic parameters were measured for individual compounds with carbon numbers ranging from C9 to C50 using the semi batch reactor under isothermal condition.

Key words: Kinetic; High density polyethylene; Isothermal; Non isothermal; TGA; Semi batch reactor


Keywords


Kinetic; High density polyethylene; Isothermal; Non isothermal; TGA; Semi batch reactor

Full Text:

PDF

References


[1] Albright, G., Farid, M., & Al-Hallaj, S. (2010). Development of a Model for Compensating the Influence of Temperature Gradients within the Sample on DSC-results on Phase Change Materials. Journal of Thermal Analysis and Calorimetry, 101(3), 1155-1160. Available from: URL: http://dx.doi.org/10.1007/s10973-010-0805-x

[2] Ballice, L. (2001). A Kinetic Approach to the Temperature-programmed Pyrolysis of Low- and High-density Polyethylene in a Fixed Bed Reactor: Determination of Kinetic Parameters for the Evolution of N-paraffins and 1-olefins. Fuel, 80(13), 1923-1935.Available from: URL: http://dx.doi.org/10.1016/S0016-2361(01)00067-9

[3] Bockhorn, H., Hentschel, J., Hornung, A., & Hornung, U. (1999a). Environmental Engineering: Stepwise Pyrolysis of Plastic Waste. Chemical Engineering Science, 54(15-16), 3043-3051.Available from: URL: http://dx.doi.org/10.1016/S0009-2509(98)00385-6

[4] Bockhorn, H., Hornung, A., Hornung, U., & Schawaller, D. (1999b). Kinetic Study on the Thermal Degradation of Polypropylene and Polyethylene. Journal of Analytical and Applied Pyrolysis, 48(2), 93-109.Available from: URL: http://www.scopus.com/scopus/inward/record.url?eid=2-s2.0-0032671521&partnerID=40&rel=R8.0.0

[5] Ceamanos, J., Mastral, J. F., Millera, A., & Aldea, M. E. (2002). Kinetics of Pyrolysis of High Density Polyethylene. Comparison of Isothermal and Dynamic Experiments. Journal of Analytical and Applied Pyrolysis, 65(2), 93-110.Available from: URL: http://dx.doi.org/10.1016/S0165-2370(01)00183-8

[6] Conesa, J. A., Font, R., Marcilla, A., & Caballero, J. A. (1997). Kinetic model for the Continuous Pyrolysis of Two Types of Polyethylene in a Fluidized Bed Reactor. Journal of Analytical and Applied Pyrolysis, 40-41, 419-431.Available from: URL: http://www.scopus.com/scopus/inward/record.url?eid=2-s2.0-0031141834&partnerID=40&rel=R8.0.0

[7] Conesa, J. A., Marcilla, A., & Font, R. (1994). Kinetic Model of the Pyrolysis of Polyethylene in a Fluidized Bed Reactor. Journal of Analytical and Applied Pyrolysis, 30(1), 101-120.Available from: URL: http://www.scopus.com/scopus/inward/record.url?eid=2-s2.0-0028530020&partnerID=40&rel=R8.0.0

[8] Constable, D., Raner, K., Somlo, P., & Strauss, C. (1992). A New Microwave Reactor Suitable for Organic Synthesis and Kinetics Studies. Journal of Microwave Power and Electromagnetic Energy, 27(4), 195-198

[9] Costa, P. A., Pinto, F. J., Ramos, A. M., Gulyurtlu, I. K., Cabrita, I. A., & Bernardo, M. S. (2007). Kinetic Evaluation of the Pyrolysis of Polyethylene Waste. Energy and Fuels, 21(5), 2489-2498.Available from: URL: http://dx.doi.org/10.1021/ef070115p

[10] Cozzani, V., Nicolella, C., Rovatti, M., & Tognotti, L. (1997). Influence of Gas-phase Reactions on the Product Yields Obtained in the Pyrolysis of Polyethylene. Industrial & Engineering Chemistry Research, 36(2), 342-348.Available from: URL: http://dx.doi.org/10.1021/ie950779z

[11] Day, M., Cooney, J. D., & MacKinnon, M. (1995). Degradation of Contaminated Plastics: a Kinetic Study. Polymer Degradation and Stability, 48(3), 341-349.Available from: URL: http://www.scopus.com/inward/record.url?eid=2-s2.0-0029192097&partnerID=40&md5=74ed91fdb9e5bb2e9d7223632d27d7df

[12] Elordi, G., Lopez, G., Olazar, M., Aguado, R., & Bilbao, J. (2007). Product Distribution Modelling in the Thermal Pyrolysis of High Density Polyethylene. Journal of Hazardous Materials, 144(3), 708-714.Available from: URL: http://dx.doi.org/10.1016/j.jhazmat.2007.01.101

[13] Encinar, J. M., & Gonzalez, J. F. (2008). Pyrolysis of Synthetic Polymers and Plastic Wastes. Kinetic Study. Fuel Processing Technology, 89(7), 678-686.Available from: URL: http://dx.doi.org/10.1016/j.fuproc.2007.12.011

[14] Encinar, J. M., & González, J. F. (2008). Pyrolysis of Synthetic Polymers and Plastic Wastes. Kinetic Study. Fuel Processing Technology, 89(7), 678-686.Available from: URL: http://www.sciencedirect.com/science/article/B6TG3-4RR830P-2/1/5ecde55cc39b75263d20111911c4f629

[15] Fernandes Jr, V. J., Araujo, A. S., Medeiros, R. A., Matos, J. R., Mercuri, L. P., Silva, A. O., et al. (1999). Kinetic Parameters of Polyethylene Degradation by the Natural Zeolite Chabazite. Journal of Thermal Analysis and Calorimetry, 56(3), 1279-1282

[16] Fischer, P. E., Jou, C. S., & Gokalgandhi, S. S. (1987). Obtaining the Kinetic Parameters from Thermogravimetry Using a Modified Coats and Redfern Technique. Industrial and Engineering Chemistry Research, 26(5), 1037-1040.Available from: URL: http://www.scopus.com/inward/record.url?eid=2-s2.0-0023346680&partnerID=40&md5=c57657d7e400d1948234243778302bc0

[17] Gao, Z., Amasaki, I., Kaneko, T., & Nakada, M. (2003a). Calculation of Activation Energy from Fraction of Bonds Broken for Thermal Degradation of Polyethylene. Polymer Degradation and Stability, 81(1), 125-130.Available from: URL: http://dx.doi.org/10.1016/S0141-3910(03)00081-8

[18] Gao, Z., Amasaki, I., & Nakada, M. (2003b). A Thermogravimetric Study on Thermal Degradation of Polyethylene. Journal of Analytical and Applied Pyrolysis, 67(1), 1-9.Available from: URL: http://dx.doi.org/10.1016/S0165-2370(02)00010-4

[19] Guo, Q., Yue, X., Wang, M., & Liu, Y. Pyrolysis of Scrap Printed Circuit Board Plastic Particles in a Fluidized Bed. Powder Technology, 198(3), 422-428.Available from: URL: http://dx.doi.org/10.1016/j.powtec.2009.12.011

[20] Kayacan, I., & Dogan, O. M. (2008). Pyrolysis of Low and High Density Polyethylene. Part I: Non-isothermal Pyrolysis Kinetics. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 30(5), 385-391.Available from: URL: http://www.scopus.com/inward/record.url?eid=2-s2.0-38849097132&partnerID=40

[21] Khalturinskii, N. A. (1987). High-temperature Pyrolysis of Polymers. Journal of Thermal Analysis, 32(6), 1675-1682.Available from: URL: http://www.scopus.com/inward/record.url?eid=2-s2.0-0023454203&partnerID=40&md5=601b92a00a8b7a2067689d5840005528

[22] Lee, J. Y., Liao, Y., Nagahata, R., & Horiuchi, S. (2006). Effect of Metal Nanoparticles on Thermal Stabilization of Polymer/Metal Nanocomposites Prepared by a One-step Dry Process. Polymer, 47(23), 7970-7979.Available from: URL: http://www.scopus.com/inward/record.url?eid=2-s2.0-33750084172&partnerID=40&md5=5193ce2e8d63963949238bc3ac6d981c

[23] Mastral, J. F., Berrueco, C., & Ceamanos, J. (2007). Theoretical Prediction of Product Distribution of the Pyrolysis of High Density Polyethylene. Journal of Analytical and Applied Pyrolysis, 80(2), 427-438.Available from: URL: http://dx.doi.org/10.1016/j.jaap.2006.07.009

[24] Petrovic, Z. S., & Zavargo, Z. Z. (1986 ). Reliability of Methods for Determination of Kinetic Parameters from Thermogravimetry and DSC Mesaurments. Journal of Applied Polymer Science, 32(4), 4353-4367.Available from: URL: http://dx.doi.org/10.1002/app.1986.070320406

[25] Ramdoss, P. K., & Tarrer, A. R. (1997). Kinetic Model Development for Single-stage Coal Coprocessing with Petroleum Waste. Fuel Processing Technology, 51(1-2), 83-100.Available from: URL: http://www.sciencedirect.com/science/article/B6TG3-3S9TG9T-6/2/8b047a215fc22ae92502d8226d86e95a

[26] Ramdoss, P. K., & Tarrer, A. R. (1998). High-temperature Liquefaction of Waste Plastics. Fuel, 77(4), 293-299.Available from: URL: http://www.sciencedirect.com/science/article/B6V3B-3T0V49W-9/2/c825e4e7ac2755011a2ffad70ad8cc92

[27] Ranzi, E., Dente, M., Faravelli, T., Bozzano, G., Fabini, S., Nava, R., et al. (1997). Kinetic Modeling of Polyethylene and Polypropylene Thermal Degradation. Journal of Analytical and Applied Pyrolysis, 40-41, 305-319.Available from: URL: http://dx.doi.org/10.1016/S0165-2370(97)00032-6

[28] Sinfronio, F. S. M., Santos, J. C. O., Pereira, L. G., Souza, A. G., Conceicao, M. M., Fernandes Jr, V. J., et al. (2005). Kinetic of Thermal Degradation of Low-density and High-density Polyethylene by Non-isothermal Thermogravimetry. Journal of Thermal Analysis and Calorimetry, 79, 393-399.

[29] Uemichi, Y., Makino, Y., & Kanazuka, T. (1989). Degradation of Polyethylene to Aromatic Hydrocarbons over Metal-supported Activated Carbon Catalysts. Journal of Analytical and Applied Pyrolysis, 14(4), 331-344.Available from: URL: http://dx.doi.org/10.1016/0165-2370(89)80008-7

[30] Westerhout, R. W. J., Waanders, J., Kuipers, J. A. M., & van Swaaij, W. P. M. (1997). Kinetics of the Low-temperature Pyrolysis of Polyethylene, Polypropene, and Polystyrene Modeling, Experimental Determination, and Comparison with Literature Models and Data. Industrial and Engineering Chemistry Research, 36(6), 1955-1964.

[31] Wu, C. H., Chang, C. Y., Hor, J. L., Shih, S. M., Chen, L. W., & Chang, F. W. (1993). On the Thermal Treatment of Plastic Mixtures of MSW: Pyrolysis Kinetics. Waste Management, 13(3), 221-235. Available from: URL: http://www.sciencedirect.com/science/article/B6VFR-48YXK4X-2K/2/2dee250dd1a6e897daa45d6a7b806f55




DOI: http://dx.doi.org/10.3968/j.est.1923847920110201.597

DOI (PDF): http://dx.doi.org/10.3968/pdf

Refbacks

  • There are currently no refbacks.


Copyright (c)




Share us to:   


Reminder

If you have already registered in Journal A and plan to submit article(s) to Journal B, please click the CATEGORIES, or JOURNALS A-Z on the right side of the "HOME".

We only use three mailboxes as follows to deal with issues about paper acceptance, payment and submission of electronic versions of our journals to databases: caooc@hotmail.com; est@cscanada.net; est@cscanada.org

 Articles published in Energy Science and Technology are licensed under Creative Commons Attribution 4.0 (CC-BY).

 ENERGY SCIENCE AND TECHNOLOGY Editorial Office

Address: 1055 Rue Lucien-L'Allier, Unit #772, Montreal, QC H3G 3C4, Canada.
Telephone: 1-514-558 6138 
Website: Http://www.cscanada.net Http://www.cscanada.org 
E-mailest@cscanada.net; est@cscanada.org

Copyright © 2010 Canadian Research & Development Centre of Sciences and Cultures