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Abstract
In this paper we consider the effect of persistence change 
test when the series exists an index change point at the 
moment. It is shown that under the null hypothesis that 
the circumstance of the series only existed an index 
change point, if the heavy tail index k change from large 
to small, the statistics is diverging at a rate of T2/κ2-κ1, and 
the larger of the κ2-κ1 is, the faster the divergence is. If the 
index changes from small to large, the statistics converge 
to the bounded constant. The numerical simulation shows 
that no matter how the change of k will lead to the size 
distortions, and the size distortions shows more serious 
when κ1>κ2.
Key words: Persistence change point; Heavy tail 
series; Ratio statistics
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INTRODUCTION
Persistence change is one of the hotspots in the research 
of change points in recent years. Statisticians have found 
that many financial data are changed from stationary 
sequences to unit root sequences under the influence of 
certain factors such as the actual output of the United 
States and the European Union Data, US fiscal deficit 
data. This change from the smooth to the unit root, that 

is, the change of the persistence component, is called the 
persistence change point, and vice versa. A large number 
of scholars have studied the persistence change point, and 
Kim (2000) detection of change in persistence of a linear 
time. Kim (2002) Corrigendum to “detection of change in 
persistence of a linear time series”. Leybourne and Kim 
(2003) tests for a change in persistence against the null of 
difference stationarity. Busetti and Taylor (2004) Tests of 
stationarity against a change in persistence. and so on. But 
found that in the past three decades, the study of persistent 
variable point is mostly based on the normal distribution 
of the new information process. However, Mandelbrot 
(1963) The variation of certain speculative prices. 
Article shows that many financial asset yields can not be 
characterized by a good distribution of normal, they are 
more spikes, heavy tail and other characteristics, so the 
heavy tail sequence of persistent change point of the study 
more practical significance.

Guillaume (1997) From the bird’s eye to the microscope: 
a survey of new stylized facts of the intra-daily foreign 
exchange markets and Anderson (1997) Meerschaert, M. 
M. Periodic moving average of random variables with 
regularly varying tails found that many types of data in the 
financial and economic arena, all of which are tail variance-
infinite sequences of normal distribution; Rechev (2000) 
Stable Paretian Models in Finance and Kokoszka (2001) 
Can one use the Durbin-Levinson algorithm to generate 
infinite variance fractional ARIMA time series studied 
linear models with heavy-tailed sequences; Horvath (2003) 
Bootstrap approximation to a unit root test statistics for 
heavy-tailed observations. Jin (2009) Subsampling tests for 
mean change point with heavy-tailed innovations studied 
the new the process of infinite variance of the heavy tail 
sequence, the various variable point of the test problem, 
and so on. On the basis of these predecessors, this paper 
will also be based on the heavy tail sequence of persistent 
change point to make an analysis, the specific content and 
chapter arrangements see the next section.
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In this paper, the goal of the paper is to extend the 
persistent change point test with index change in heavy 
tail series. The following work on the limit distribution 
of statistics is obtained and analyzes the influence of the 
statistics for the break points. We can conclude that the 
persistent change point not only depends on the heavy tail 
index, but also depends on the magnitude of heavy tail 
index and any other. 

The remainder of the paper is structured as follows. 
Section 1 introduces the model, assumption and test 
statistic. Main results in Section 2. Section 3 included 
some Monte Carlo experiments. The conclusions draw in 
Section 4. Finally, all proofs are given in the appendix.

1 .  M O D E L ,  H Y P O T H E S E S  A N D 
STATISTIC
In order to analyze the effect of Persistent change point 
test with index change in heavy tail series, given the 
following generation process:

yt=μ+zt ,
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Among them, 1{·} is the indicator function, εt,1 and εt,2 
are heavy tail sequence, the heavy tail index is κ1 and κ2, 
λ* and τ*are unknown change point moment, and indicate 
the heavy tail index change point and the persistence 
change point respectively. In order to be able to better 
show the effect of the heavy tail index change point on 
the persistence change point, consider the following 
hypothesis test problem: the null hypothesis H0 is that 
there no persistent change point, but there presence a 
heavy tail index change point, ie

H0:ρ1=ρ2=0,κ1≠κ2 ,
against the alternative hypothesis that the series exist a 
persistent change point and a heavy tail index change 
point, expressed as follow:

H1:ρ1≠ρ2,|ρ1 |<1,ρ2=1,κ1≠κ2 .
Since this paper is determine to the direction of the 

persistence change point from I(0) to I(1), the statistic will 
use Kim’s ratio test statistic.

���� � �� � ������� ∑ �∑ �̂����
�������� ���

��������
������ ∑ �∑ �̂����

��� ������
���

. 

Where, 

�̂��� � �� � �
���� ∑ ������

��� ，�̂��� � �� � �
������ ∑ ���

��������  .

In the model given by Kim, the error process is a 
mixed Gaussian sequence, which satisfies the general 
central limit theorem, and in this paper is based on the 
persistence point of the heavy tail sequence. In order to 

derive the limit distribution of E(τ), we give the following 
assumptions and lemmas.

Assumption 1.1.  is  a symmetric independent 
distribution of the heavy tail sequence, κ∈(1,2) in the 
stable absorption domain, and Eεt=0.

Lemma 1.1. When assumption 2.1. is hold, there are
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And U1(τ) and U2(τ) are on the [0,1], and the heavy tail 
exponent is the Levy process of k and k/2 respectively. 
Kokoszka and Wolf proved the lemma and pointed out 
that aT could be expressed as

aT=T1/kL(T) .
Where L(·) is slow variable function.

2. MAIN RESULTS
Theorem 2.1. The sequence {εt} satisfies assumption 
2.1. Under the condition that the null hypothesis H0 is 
satisfied, if ，  

 

 

, then
，  

 

 

, when κ1>κ2;

，  

 

 , when κ1 ≤ κ2.
Remark 2.1. It can be seen from the conclusion 

in theorem 3.1 that when the heavy tail exponent k is 
changed from large to small, the statistic tends to infinity 
when T→∞, but when the heavy tail exponent k is 
changed from small to large, the statistic converges to the 
bounded constant. the conclusion shows that when the 
heavy tail exponent has a change point, it will affect the 
test of the persistence change point, so that the level of the 
empirical value under the null hypothesis is distorted and 
the false rejects, that is, the heavy tail index change point 
is judged as the persistence change point. When k is large, 
the statistic diverges to infinity, which will produce very 
large horizontal distortions. When k is small, the statistic 
also converges to bounded constants, but in the derivation 
it is found that the statistic has changed, so it will also 
lead to distortions in the level of experience, but the 
specific level of distortion will be given in the numerical 
simulation of the next section.

Theorem 2.2. When the sequence {ε t} satisfies 
assumption 1.1, under the alternative assumptions that H1 

is established, when λ*≤τ*, have  

 

; 

when λ*>τ*, if κ1 > κ2 , have  

 

, if κ1 

≤ κ2, have Ξ(τ)=Op(T
2).

Remark 2.2. It can be seen from the conclusion in 
theorem 2.2 that the position of the two kinds of change 
point and the change magnitude and direction of the heavy 
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tail index all affect the divergence velocity of the statistics. 
On one hand, considering the influence of the direction of 
the heavy tail index, when the exponential change point λ* 

is before the persistence change τ*, that is λ*≤τ*, then the 

statistics are divergent at the rate of �����
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 and the 

divergence velocity is 
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 when there is no exponential 
change point. It can be found that as long as κ1 > κ2, and 

κ1, κ2∈[1,2], have 
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, that is, the heavy tail 

index change point at this time will increase the rejection 
rate of the persistence change test, and reject the null 

hypothesis; but when κ1≤κ2, that 

�����
�
���

�
���

���
�
��

� � 2
�� �

2
�� � �

� � 2
�� �

2
�� � �

� � 2
�� � �

�����
�
���

�
���

, in this 

case, the power function of the test will be a certain loss. 
reconsider when the exponential change point λ* is after 
persistent change point τ*, that is when λ* > τ*, if κ1>κ2, 
there are the same conclusions as λ* ≤ τ* and κ1>κ2 but 
when κ1 ≤ κ2, the divergence velocity of the statistics is T2, 

then 
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, so it will weaken the power function. On 

the other hand, considering the influence of two kinds of 
change position on the test statistic, we can see that when 
κ1 ≤ κ2 the divergence velocity of λ* > τ* is T2 is bigger than 
the divergence velocity of λ* ≤ τ* is 
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κ1>κ2, the size of λ* and τ* is independent, and the statistics 
are divergent at the same velocity. A detailed proof of 
theorem 2.2 will be given in the appendix.

3. MONTE CARLO STUDY
In this section we use Monte Carlo study to verify the 
theory of the previous section, and through Matlab to 
achieve. First consider the data generation process as 
follows: 

，

，

，

 Then
，

，

，

 We have τ*=1 under the null hypothesis. Without loss 
of generality, make μ=0.

εt,1 and εt,2 be heavy tail sequences with heavy tail 
index κ1,κ2, respectively. Heavy tailed data is generated by 
Prof. Nolan’s Stable software. In the numerical simulation 
process, the selected sample is T=200, 300, 500, and the 
significance level of the test is 0.05, the critical value of 
the test is shown in Table 1.

Table 1
Statistic E(τ) Critical Value
κ MC(Ξ(τ)) κ MC(Ξ(τ))
1.1 1559.79 1.6 66.48

1.2 550.30 1.7 43.44

1.3 318.51 1.8 35.78

1.4 192.36 1.9 23.24
1.5 95.20 2.0 17.23

Table 2
The Level of Experience Under the Heavy Tail Index Change Point (a)

κ1→κ2 T λ κ1→κ2 T λ
0.3 0.5 0.7 0.3 0.5 0.7

200 0.858 0.852 0.752 200 0.055 0.190 0.292 
2.0→1.1 300 0.909 0.894 0.833 1.1→2.0 300 0.064 0.182 0.301 

500 0.945 0.931 0.891 500 0.064 0.189 0.310 
200 0.743 0.748 0.664 200 0.046 0.146 0.243 

2.0→1.2 300 0.810 0.793 0.712 1.2→2.0 300 0.048 0.158 0.255 
500 0.865 0.873 0.795 500 0.052 0.142 0.254 
200 0.646 0.648 0.534 200 0.045 0.136 0.211 

2.0→1.3 300 0.708 0.685 0.598 1.3→2.0 300 0.047 0.129 0.232 
500 0.763 0.755 0.674 500 0.036 0.126 0.204 
200 0.547 0.528 0.449 200 0.034 0.104 0.188 

2.0→1.4 300 0.586 0.584 0.475 1.4→2.0 300 0.037 0.093 0.193 
500 0.642 0.626 0.536 500 0.029 0.109 0.177 
200 0.414 0.397 0.331 200 0.031 0.082 0.149 

2.0→1.5 300 0.468 0.421 0.351 1.5→2.0 300 0.022 0.082 0.133 
500 0.486 0.488 0.408 500 0.023 0.075 0.138 
200 0.328 0.313 0.234 200 0.029 0.073 0.119 

2.0→1.6 300 0.334 0.326 0.282 1.6→2.0 300 0.032 0.062 0.115 
500 0.380 0.351 0.321 500 0.024 0.057 0.122 
200 0.218 0.207 0.157 200 0.025 0.053 0.078 

2.0→1.7 300 0.227 0.224 0.200 1.7→2.0 300 0.023 0.053 0.093 
500 0.251 0.255 0.202 500 0.031 0.039 0.084 
200 0.158 0.146 0.113 200 0.033 0.047 0.071 

2.0→1.8 300 0.155 0.173 0.116 1.8→2.0 300 0.029 0.050 0.072 
500 0.186 0.175 0.140 500 0.026 0.044 0.070 
200 0.089 0.087 0.061 200 0.044 0.047 0.065 

To be continued
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κ1→κ2 T λ κ1→κ2 T λ
2.0→1.9 300 0.091 0.088 0.076 1.9→2.0 300 0.039 0.049 0.061 

500 0.094 0.092 0.081 500 0.036 0.042 0.050 
200 0.032 0.036 0.040 200 0.037 0.037 0.036 

2.0→2.0 300 0.043 0.043 0.038 2.0→2.0 300 0.048 0.039 0.033 
500 0.047 0.056 0.049 500 0.041 0.046 0.043 

Table 3
The Level of Experience Under the Heavy Tail Index Change Point (b)

κ1→κ2 T λ κ1→κ2 T λ
0.3 0.5 0.7 0.3 0.5 0.7

200 0.463 0.412 0.311 200 0.045 0.109 0.165 
1.6→1.1 300 0.542 0.501 0.402 1.1→1.6 300 0.039 0.091 0.155 

500 0.542 0.492 0.427 500 0.040 0.096 0.165 
200 0.337 0.288 0.226 200 0.043 0.082 0.131 

1.6→1.2 300 0.371 0.339 0.274 1.2→1.6 300 0.037 0.077 0.118 
500 0.373 0.328 0.260 500 0.041 0.068 0.115 
200 0.220 0.208 0.147 200 0.035 0.075 0.090 

1.6→1.3 300 0.243 0.235 0.177 1.3→1.6 300 0.033 0.071 0.089 
500 0.242 0.236 0.196 500 0.036 0.065 0.102 
200 0.148 0.119 0.109 200 0.052 0.060 0.083 

1.6→1.4 300 0.158 0.143 0.123 1.4→1.6 300 0.037 0.053 0.071 
500 0.177 0.142 0.123 500 0.039 0.056 0.072 
200 0.101 0.088 0.079 200 0.053 0.050 0.052 

1.6→1.5 300 0.079 0.086 0.077 1.5→1.6 300 0.053 0.054 0.060 
500 0.082 0.092 0.082 500 0.049 0.056 0.060 
200 0.050 0.048 0.063 200 0.060 0.053 0.054 

1.6→1.6 300 0.052 0.051 0.052 1.6→1.6 300 0.057 0.051 0.060 
500 0.055 0.052 0.053 500 0.052 0.052 0.050 
200 0.150 0.133 0.104 200 0.046 0.062 0.084 

1.3→1.1 300 0.165 0.125 0.108 1.1→1.3 300 0.037 0.060 0.071 
500 0.160 0.157 0.110 500 0.040 0.047 0.073 
200 0.098 0.085 0.062 200 0.051 0.047 0.060 

1.3→1.2 300 0.073 0.077 0.077 1.2→1.3 300 0.040 0.053 0.057 
500 0.084 0.090 0.064 500 0.038 0.053 0.054 
200 0.053 0.058 0.052 200 0.049 0.055 0.044 

1.3→1.3 300 0.048 0.052 0.050 1.3→1.3 300 0.052 0.059 0.043 
500 0.049 0.046 0.052 500 0.057 0.043 0.048 

Table 4
For the Empirical Power Function of κ1 > κ2 (T = 500)

κ1→κ2 τ λ κ1→κ2 τ λ
0.3 0.5 0.7 0.3 0.5 0.7

0.3 1.000 1.000 1.000 0.3 1.000 1.000 1.000 
2.0→1.1 0.5 1.000 1.000 1.000 1.9→1.1 0.5 1.000 1.000 1.000 

0.7 1.000 1.000 1.000 0.7 1.000 1.000 1.000 
0.3 1.000 1.000 1.000 0.3 1.000 1.000 1.000 

2.0→1.6 0.5 1.000 1.000 1.000 1.9→1.5 0.5 1.000 1.000 1.000 
0.7 1.000 1.000 1.000 0.7 0.999 0.999 1.000 
0.3 1.000 1.000 1.000 0.3 1.000 1.000 1.000 

2.0→1.9 0.5 1.000 1.000 1.000 1.9→1.8 0.5 1.000 1.000 1.000 
0.7 1.000 1.000 1.000 0.7 0.998 1.000 1.000 
0.3 1.000 0.999 1.000 0.3 1.000 1.000 0.999 

1.8→1.1 0.5 1.000 1.000 1.000 1.7→1.1 0.5 1.000 1.000 1.000 
0.7 1.000 1.000 1.000 0.7 0.999 1.000 1.000 
0.3 1.000 0.999 0.999 0.3 1.000 1.000 0.999 

1.8→1.4 0.5 0.999 1.000 1.000 1.7→1.3 0.5 0.999 1.000 0.998 
0.7 0.996 0.999 0.999 0.7 0.999 0.999 0.998 
0.3 0.998 0.999 0.997 0.3 0.999 0.998 0.998 

Continued

To be continued
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κ1→κ2 τ λ κ1→κ2 τ λ
1.8→1.7 0.5 1.000 0.999 0.998 1.7→1.6 0.5 0.998 0.998 0.997 

0.7 0.998 0.996 0.997 0.7 0.993 0.992 0.993 
0.3 1.000 0.998 0.999 0.3 0.999 0.997 0.994 

1.6→1.1 0.5 1.000 1.000 0.998 1.5→1.1 0.5 0.996 0.999 0.995 
0.7 0.997 0.998 1.000 0.7 0.992 0.997 0.992 
0.3 0.997 0.998 0.996 0.3 0.994 0.995 0.989 

1.6→1.3 0.5 1.000 0.997 0.997 1.5→1.3 0.5 0.994 0.994 0.993 
0.7 0.993 0.994 0.994 0.7 0.985 0.987 0.982 
0.3 0.997 0.995 0.993 0.3 0.991 0.990 0.991 

1.6→1.5 0.5 0.994 0.993 0.995 1.5→1.4 0.5 0.988 0.990 0.980 
0.7 0.988 0.986 0.991 0.7 0.973 0.978 0.968 
0.3 0.991 0.986 0.983 0.3 0.981 0.985 0.979 

1.4→1.1 0.5 0.989 0.991 0.984 1.4→1.3 0.5 0.982 0.985 0.961 
0.7 0.972 0.967 0.975 0.7 0.945 0.934 0.952 

Table 5
For the Empirical Power Function of κ1≤κ2 (T = 500)

κ1→κ2 τ λ κ1→κ2 τ λ
0.3 0.5 0.7 0.3 0.5 0.7

0.3 0.878 0.947 0.976 0.3 0.995 0.999 0.996 
1.1→2.0 0.5 0.866 0.867 0.969 1.6→2.0 0.5 0.995 0.994 0.995 

0.7 0.804 0.808 0.821 0.7 0.987 0.988 0.990 
0.3 0.931 0.973 0.984 0.3 0.996 0.999 0.997 

1.2→2.0 0.5 0.926 0.930 0.977 1.7→2.0 0.5 0.997 0.999 0.999 
0.7 0.885 0.873 0.885 0.7 0.996 0.993 0.996 
0.3 0.965 0.977 0.991 0.3 0.998 0.999 1.000 

1.3→2.0 0.5 0.956 0.961 0.983 1.8→2.0 0.5 0.997 0.999 1.000 
0.7 0.938 0.925 0.937 0.7 0.999 0.999 0.997 
0.3 0.975 0.987 0.994 0.3 1.000 1.000 1.000 

1.4→2.0 0.5 0.975 0.971 0.992 1.9→2.0 0.5 1.000 0.999 1.000 
0.7 0.967 0.960 0.959 0.7 0.997 1.000 0.999 
0.3 0.992 0.993 0.995 0.3 1.000 1.000 1.000 

1.5→2.0 0.5 0.994 0.990 0.995 2.0→2.0 0.5 1.000 1.000 1.000 
0.7 0.979 0.981 0.980 0.7 1.000 1.000 1.000 
0.3 0.855 0.935 0.968 0.3 0.989 0.988 0.992 

1.1→1.8 0.5 0.849 0.854 0.954 1.5→1.8 0.5 0.988 0.984 0.991 
0.7 0.784 0.773 0.784 0.7 0.972 0.976 0.979 
0.3 0.917 0.956 0.972 0.3 0.990 0.995 0.997 

1.2→1.8 0.5 0.910 0.908 0.966 1.6→1.8 0.5 0.995 0.994 0.995 
0.7 0.865 0.856 0.869 0.7 0.990 0.980 0.981 
0.3 0.954 0.975 0.986 0.3 0.999 0.997 0.997 

1.3→1.8 0.5 0.955 0.956 0.972 1.7→1.8 0.5 0.996 0.998 0.997 
0.7 0.916 0.912 0.905 0.7 0.990 0.992 0.993 
0.3 0.972 0.984 0.992 0.3 0.999 0.999 0.997 

1.4→1.8 0.5 0.969 0.977 0.989 1.8→1.8 0.5 0.999 0.997 1.000 
0.7 0.942 0.944 0.942 0.7 0.998 0.995 0.992 
0.3 0.868 0.929 0.966 0.3 0.977 0.981 0.986 

1.1→1.6 0.5 0.869 0.864 0.937 1.4→1.6 0.5 0.979 0.975 0.982 
0.7 0.775 0.772 0.766 0.7 0.952 0.951 0.942 
0.3 0.922 0.948 0.974 0.3 0.987 0.992 0.990 

1.2→1.6 0.5 0.911 0.911 0.958 1.5→1.6 0.5 0.987 0.985 0.987 
0.7 0.872 0.850 0.872 0.7 0.970 0.972 0.963 
0.3 0.951 0.973 0.979 0.3 0.995 0.997 0.993 

1.3→1.6 0.5 0.955 0.948 0.967 1.6→1.6 0.5 0.993 0.991 0.994 
0.7 0.908 0.912 0.895 0.7 0.985 0.985 0.988 
0.3 0.851 0.899 0.933 0.3 0.950 0.958 0.966 

1.1→1.4 0.5 0.833 0.851 0.896 1.3→1.4 0.5 0.943 0.939 0.957 
0.7 0.761 0.748 0.737 0.7 0.896 0.878 0.889 
0.3 0.918 0.932 0.949 0.3 0.972 0.974 0.979 

1.2→1.4 0.5 0.907 0.911 0.940 1.4→1.4 0.5 0.972 0.968 0.965 
0.7 0.844 0.821 0.826 0.7 0.922 0.925 0.934 

Continued
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Table 2 shows that the heavy tail index changes from 
κ1=2.0 to the smaller heavy tail index κ2, or the small tail 
index κ1 changes to κ2=2.0 in the absence of a persistent 
change point in the null hypothesis. It can be seen from 
the data in the table that: a) When κ1>κ2, that is, on the left 
side of Table 2, the empirical level is already far greater 
than the significance level, ie, the level of experience is 
seriously distorted, Mismatched as a permanent variable 
point, and the level of distortion increases with the sample 
increases, such as the heavy tail index from 2.0 to 1.1, λ 
take 0.5, then T=200, 300, 500 experience level values 
were 0.852, 0.894, 0.931.

In addition, the severity of the horizontal twist is also 
affected by the magnitude of the heavy-tail index. The 
greater the change of the heavy tail index, the more severe 
the horizontal twist. If T=300, λ=0.5, κ1 changes from 2.0 
to 1.1, 1.5 and 1.9 The value of the experience level is 
0.894, 0.421, 0.088 respectively. Finally, the position of 
the heavy tail index change point also affects the size of 
the experience level, the more the position of the change 
point, the smaller the experience level, such as the heavy 
tail index from 2.0 to 1.1, and T=300, λ=0.3, 0.5, 0.7 the 
empirical level is 0.858, 0.852, 0.752 respectively; b) 
When κ1≤κ2, from the theorem 2.1, we can see that when 
κ1≤κ2, The statistic of convergence is constant, the right 
side of Table 3.3 can be seen, there are still horizontal 
distortion, but compared to κ1>κ2, the level of distortion 
has been much smaller, and the level of distortion has 
not been affected by the sample size. The same is true for 
κ1>κ2, the greater the magnitude of the heavy tail index, 
the more severe the horizontal twist, but the effect of the 
variable position on the empirical level is opposite to that 
of κ1>κ2. The higher the level, such as κ1=1.1, κ2=2.0, 
T=300, λ=0.3, 0.5, 0.7, the empirical level of 0.064, 0.182, 
0.301, respectively.

The level of experience given in Table 2 is the change 
between the Gaussian sequence and the heavy tail 
sequence of the different indices. To make the conclusion 
more general, the changes between the different heavy tail 
indices are given in Table 3. Comparing the data in Table 2, 
the data in Table 3 have the same conclusion.

Table 4 shows the empirical power function values for 
numerical simulations when κ1>κ2 under the alternative 
assumptions. It can be concluded that:

a)  First, from the whole, in the case of κ1>κ2, the value 
of the power function is mostly close to 1, which is a 
reinforcement of the power, but found that when the 
heavy tail index from 1.4 to 1.3, the power function 
value only 0.945, which is due to the heavy tail 
index itself in the smaller when the power is low, so 
this does not affect the overall law;

b)  The value of the power function decreases with the 
decrease of the change magnitude. As the statistic 
given in theorem 2.2 is divergent at the rate of 

  when κ1>κ2 , so the greater the κ1-κ2, the 

faster the divergence rate, the higher the rejection 
rate will be. For example, let τ=λ=0.7, then the heavy 
tail index from 1.6 to 1.1, 1.3, 1.5 the rejection rate 
was 0.997, 0.993, 0.988, respectively.

In Table 5, given the empirical power value of κ1 ≤ κ2 
under the alternative hypothesis. Since the data is too big, 
just to give the numerical results for the sample at 500. From 
the results in the table can be drawn the following rules:

First consider the relationship between the position of 
the change point and the power function.

a)  The larger the value of the heavy tail index change 
point λ, change point position is more backward. 
The greater the value of the empirical power 
function. For example, κ1 to κ2 are 1.1 to 2.0 and 
τ=0.3, then the power function values of λ=0.3, 0.5, 
0.7 are 0.878, 0.947 and 0.976 respectively, which is 
consistent with the conclusion of κ1≤κ2 in Table 1.

b)  The smaller of the persistence change point τ, 
change point position is more forward. the greater 
the value of the empirical power function. For 
example κ1 to κ2 is 1.1 to 2.0, λ=0.3, the power 
function values of τ=0.3, 0.5, 0.7 are 0.878, 0.866 
and 0.804 respectively.

c)  The value of the power function at λ≥τ is greater 
than the power function value at λ<τ. For example, 
when κ1 to κ2 is taken from 1.1 to 2.0, the empirical 
power function of τ=0.3, 0.5 is 0.947 and 0.867, and 
the power function value at τ=0.7 is 0.808, which is 
obviously less than 0.3 and 0.5 The rejection rate. 
This is consistent with the conclusion drawn from 
Theorem 2.2.

Then, consider the influence of the heavy tail index on 
the power function value.

a)  The smaller of the heavy tail index κ is, the smaller 
the empirical power function is. If we take τ=0.7, 
λ=0.3, κ is 2.0 to 2.0, 1.8 to 1.8, 1.6 to 1.6, 1.4 to 1.4, 
respectively, the rejection rate is 1.00, 0.998, 0.985, 
0.922 respectively.

b)  The value of the power function increases with the 
decrease of the magnitude of the heavy tail index, 
that is, the larger the change magnitude, the lower 
the rejection rate. For example, let τ=λ=0.3, the 
heavy tail index from 1.1 to 2.0, 1.5 to 2.0, 1.9 to 
2.0, respectively, the magnitude of 0.9, 0.4, 0.1 
respectively. Their corresponding power function 
values were 0.878, 0.992, 1.000 respectively. This 
is from theorem 2.2 we conclude that κ1≤κ2, when 
statistic E(τ) divergence rate is  of the 
decision, by numerical simulation. Also verify the 
correctness of the theorem.

c)  Finally, consider the effect of sample size on power 
function values. As with the data in other tables, 
on the alternative assumptions the same rejection 
rate increases as the sample increases, but given 
that the amount of data is too large, this paper does 
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not give the alternative hypothesis that the sample 
is an empirical power value of 200, 300. The above 
numerical simulation can be a good description of the 
correctness of the theoretical method in this chapter, 
and in the null hypothesis and alternative hypothesis, 
the detection of change points have a good effect.

CONCLUSION
In this paper, change points are consider in the heavy 
tail indexes and the persistence change. We obtained 
conclusions as follows: under the null hypothesis that the 
circumstance of the series only existed an index change 
point, if the heavy tail index κ change from large to small, 
the statistics is diverging at a speed of  , and the 
larger of the κ2－κ1 is, the faster the divergence is. If the 
index changes from small to large, the statistics converges 
to the bounded constant. But the numerical simulation 
shows that no matter how the change of κ will lead to 
the size distortions, and the size distortions shows more 
serious when κ1>κ2. Under the alternative hypothesis, the 
series have persistence change point and index change 
point, in the case of κ1>κ2, the power is increased which 
makes it easier to reject the null hypothesis. But the power 
will loss when κ1 ≤ κ2.
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APPENDIX
Proof of Theorem 2.1. Under the condition of the null hypothesis H0 is established, First, discussing the κ1>κ2 .

The first case is when λ*>τ, for the denominator 
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Where ,U1,1 is a stable Levy process of the κ1.

For the numerator, let t=[rT], r∈[0,1], when τ<r<λ* we have

Then, by Lemma 1.1 we have

     (A.1)

Where , U1,2 is a stable Levy process of the κ2.

Available from type A.1

     (A.2)

when λ*<r<1 we have

Then 

    (A.3)

Available from type A.3

     (A.4)

Comprehensive formula A.2 and formula A.4 the numerator can be simplify as follow, 

Thus 
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     (A.5)

The second case is when λ*<τ, the numerator can be simplify as follow:

For denominator, in the case of 0<r<λ*,

Then 

     (A.6)

Available from type A.6

In the case of λ* < r < τ,

Then 

    (A.7)

Available from type A.7

Then

      (A.8)
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Comprehensive formula A.2 and formula A.4, we can get when κ1>κ2, then

 

Similarly, when κ1 ≤ κ2, if λ
* > τ, the denominations is

     (A.9)

While the numerator is similar to the distribution of κ1 > κ2

Then 

    (A.10)

Comprehensive formula A.9 and formula A.10
       Ξ(τ)=Οp (1). (A.11)
If λ* ≤ τ, the numerator is

    (A.12)

While the denominator is similar to the distribution of κ1 > κ2

     (A.13)

Comprehensive formula A.12 and formula A.13

      (A.14)
This proves the theorem 2.1.
Proof of Theorem 2.2.
First of all, the simplification of the statistics, the following points to discuss, first consider the λ* ≤ τ*, can be divided 

into three cases.
For the first case: When τ ≤ λ* ≤ τ*, then the denominator can be simplified

While for numerator

Let t=[rT], r∈(0,1) . If τ < r < λ*, then
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If λ* < r < τ*, then

            

If τ* < r < 1, then

Then there is when τ ≤ λ* ≤ τ*

So there is

For the second case: when λ* ≤ τ ≤ τ*, then the denominator can be simplified
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If τ < r < τ*, then the numerator

If τ* < r < 1, then the numerator

Then we have 

Thus, when λ* ≤ τ ≤ τ*

Where  When κ1 > κ2, that Ξ(τ)=Op (T
2)；when κ1 ≤ κ2, then .

For the third case: when λ* ≤ τ* ≤ τ, Then the numerator can be simplified

And denominator, if 0 < r < λ*

If λ* < r < τ*

If τ* < r < τ,

So have
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Thus, when λ* ≤ τ* ≤ τ, Ξ(τ)=Οp (1).

Based on the above three cases, when λ* ≤ τ*, κ1>κ2, have , when κ1 ≤ κ2, have 
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Similarly, when λ* > τ*, we can get:

If τ<τ* < λ*，then 
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Comprehensive these three cases, available

When κ1 > κ2, 
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; when κ1 ≤ κ2, then Ξ(τ)=Op (T
2 ). 

The proof of theorem 2.1 is then completed.


