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Abstract
This paper examines four different methods of computing 
partial correlation coefficients. These include conventional 
method, variance-covariance matrix approach, regression 
residual’s approach, and OLS method. Each of these 
is fully illustrated with practical examples as well as R 
syntax. Applicability of each of the methods is discussed 
in our illustrations. Strength and weakness of each method 
are extensively detailed. It’s, however, discovered that 
none of the basic assumptions of partial correlation: 
linearity, normality, and non-existence of outliers is 
violated after performing statistical checks on the 
datasets used. The study, therefore, recommends the best 
method(s) of computing partial correlation coefficients 
when at least one variable is held constant, thereby adding 
more invaluable knowledge to the existing literatures. 
Finally, the study further recommends the best method in 
each scenario with illustrative examples as evidences. 
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1. INTRODUCTION
In both parametric and non-parametric statistical 
situations, where the term correlation may be mentioned, 
simply the word correlation means an association that 
exists between or among (as the case may be) two or more 
variables, where perhaps one depends on the other. On 
the other hand, correlation coefficient could be defined as 
a measurement of the strength of such association. This 
measurement is usually in two decimal places, making 
it easier to interpret in form of percentage. In another 
dimension, coefficient of correlation could mean the 
degree at which one variable is associated with the other. 

According to Akoglu (2018) and Merriam-webster 
dictionary (2020), correlation is defined as a relation 
that exists between phenomena or things (or between 
mathematical or statistical variables) which tend to 
vary, be associated, or occur together in a way not 
expected by chance alone. Also, Mukaka (2012) defines 
correlation as a statistical method used to assess a 
possible linear association between two continuous 
variables. It is assumed to be simple both in calculation 
and interpretation. However, misuse of correlation is so 
common among researchers that some statisticians have 
wished that the method had never been devised at all 
(Mukaka, 2012; Bishara and James, 2017).

The term ‘partial correlation’ is defined as the type 
of correlation that exists between two random variables, 
where one depends on the other, for which at least one 
other variable is held constant. Though it exists among at 
least three variables, the first two variables are the main 
target variables with all other variables referred to as 
controlling variables. However, the number of controlling 
variable(s) determines the order of the partial correlation. 
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If there is no controlling variable, it is called zero-order 
partial correlation, and equivalently, it is known as 
Pearson’s correlation coefficient. 

The present study examines four different methods 
of computing partial correlation coefficients. Each of the 
methods is fully illustrated with practical examples as 
well as R syntax. Applicability of each of the methods 
is discussed in our illustrations. Strength and weakness 
of each method are extensively detailed. This study 
recommends the best method in each scenario with 
illustrative evidences. Therefore, the study aims at 
providing the best method of computing partial correlation 
coefficients when one, two and more variables are held 
constant, thereby adding more invaluable knowledge to 
the existing literatures. The first chapter is introduction 
followed by literature review, which is subdivided into 
theoretical and empirical literature. The third chapter, 
data and methodology, comprising the data, theoretical 
framework, model specification, and estimation procedure, 
are extensively discussed. Descriptive statistics, pre-
estimation results, and estimation results come next as 
the fourth, while the last chapter discusses conclusion and 
recommendation.

2. LITERATURE REVIEW
2.1 Theoretical Literature
Yule (1907), Fisher (1924) and Fieller, et. al. (1957) report 
that any correlation coefficient shouldn’t be more than 
positive one (+1) and also shouldn’t be less than negative 
one (-1). Occasionally sometimes, the coefficient could 
be zero, which indicates that no iota of association exist 
between the variables involved. Therefore, all correlation 
coefficients should be between -1 and +1 respectively. 
According to Hinkle, et. al. (2018) and Egozcue, et. 
al. (2018), the following rules of thumb are succinctly 
explained in Table 1 for the interpretation of correlation 
coefficients.
Table 1
Rules of Thumb for the Interpretation of Correlation 
Coefficient

S/N Correlation coefficient Interpretation

1. Between 0.90 and 1.00 
(Between-0.90 and-1.00)

Very high positive 
(negative) correlation

2. Between 0.70 and 0.89 
(Between-0.70 and-0.89)

High positive (negative) 
correlation

3. Between 0.50 and 0.69 
(Between-0.50 and-0.69)

Moderate positive (neg-
ative) correlation

4. Between 0.30 and 0.49 
(Between-0.30 and-0.49)

Low positive (negative) 
correlation

5. Between 0.01 and 0.29 
(Between-0.01 and-0.29)

Negligible or weak 
correlation

6. When the value of the 
correlation = 0.00

Zero correlation or no 
correlation

Source: Hinkle, et. al. (2018) and Egozcue, et. al. (2018)

In a situation where variables of interest are 
continuous, thereby producing cross-sectional data sets, 
four prominent correlation coefficients are very popular 
and these include: simple, multiple, partial and canonical 
correlation coefficients. A correlation is said to be simple 
if the degree of association between only two variables is 
computed using either Pearson’s Product Moment (PPM) 
technique, Spearman’s Rank technique, or Kendall’s 
Tau technique. And, when the result is positive, it means 
increase in one variable leads to corresponding increase 
in the other variable, and vice-versa. Also, whenever 
the coefficient of correlation is negative, it is indicates 
that increase in one variable results to decrease in the 
other, and vice-versa. When we have zero value as the 
correlation coefficient, it shows that no association exists, 
indicating that when one variable increases or decreases, 
the other variable remains stagnant. 

A multiple correlation exists between a dependent 
variable and at least two independent variables. It is an 
index to measure how well a dependent variable behaves 
when correlated with two or more independent variables. 
In statistics, the coefficient of multiple correlation is a 
measure of how well a given variable can be predicted 
using a linear function of a set of other variables 
(Kynčlová, et. al., 2017). It is the correlation between 
the variable›s values and the best predictions that can 
be computed linearly from the predictive variables 
(Langfelder and Steve, 2012).

The term ‘canonical correlation’, which was first 
introduced by Hotelling (1936), is a branch of correlation 
commonly found in multivariate analysis where the 
degree of association between a set of linear combination 
of variables and another set of linear combination of 
variables is measured. Invariably, we could say that 
canonical correlation analysis is a method used to 
identify and measure the associations between two sets 
of variables, since canonical itself is a statistical term 
for analyzing latent variables. In obtaining canonical 
correlation coefficient, however, at least two variables 
must be contained in each set of linear combination of 
variables. 

On the other hand, we could define a partial correlation 
coefficient as a measurement of the strength of association 
between two variables, while simultaneously keeping 
the influence of at least one other variable constant. 
Specifically, this type of correlation analysis is quite 
different from the rest three earlier discussed. In this 
case, more than two random variables are involved, but 
these variables do not require partition unlike canonical 
correlation analysis. Simply, it is situation where we 
measure the degree of association between two variables 
of interest while holding the influence of all other 
variables constant. Partial correlation, however, quantifies 
linear association between two variables while adjusting 
for the influence of the remaining variables (Lonas, 2020). 
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2.2 Empirical Literature
Partial correlation can be used to statistically control for 
unwanted variables (Serlin and Harwell, 2007). In 
probability and statistics, partial correlation measures the 
degree of association between two random variables, with 
the effect of a set of controlling variables random 
variables removed. In a formal situation, the partial 
correlation between  and  given a set of n-controlling 

variables , written as , is the 
correlation between the residuals  and  resulting 

from the linear regression of  with y , and of  with 

y , respectively (Guilford and Fruchter, 1973; Lonas, 

2020). The first-order partial correlation (that is, when n = 

1) is the difference between a correlation and the product 
of the removable correlations divided by the product of 
the coefficients of alienation of the removable correlations 
(Fisher, 1924; Guilford and Fruchter, 1973; Lonas, 2020). 

However, partial correlations are only valid when the 
pattern of relationships between the variables reflects 
a meaningful model (Waliczek, 1996). According to 
Pedhazur (1982), controlling variables without regard to 
the theoretical considerations about the pattern of relations 
among them may amount to a distortion of reality and 
result in misleading or meaningless results. It is also 
important consideration is that the researcher must know 
exactly what dependent variable is being measured after 
the influence of one or more independent variable(s) has 
been removed.

In 1988, Horwitz and Rapoport engage in the use of 
method of partial correlation analysis to characterize 
the brain in terms of functional association among brain 
regions. Therefore, correlation coefficients between pairs 
of regional glucose metabolic rates were extensively 
discussed in connection with assessing patterns of 
association among brain regions in humans and animals. 
The duo argue that partial correlation coefficients 
(partialling out the global metabolic rate) or correlations 
between reference rates (regional to global metabolic rate) 
should be used in removing the distorting influence of 
systematic intrasubject differences in glucose utilization.

Also, a partial correlation analysis was used by Aloe 
(2013) while studying the synthesis of partial effect sizes. 
Three partial effect sizes for the correlation were focused 
on: the standardized slope, the partial correlation, and 
the semi-partial correlation. Out of these, Aloe reports 
that partial correlation was greatly employed and most 
useful for meta-analysis in two common situations: when 
primary studies reporting regression models do not report 
bivariate correlations, and when it is specific interest to 
partial out the effect of other variables. 

In a paper authored by Ha and Sun (2014), a partial 
correlation was used to handle the problem of construction 
gene co-expression network. Also, Kenett, et. al (2015) 

apply partial correlation for financial marketing strategies. 
However, in the analysis of the dependency network 
methodology, the application of partial correlation 
has really helped to uncover dependency and, also to 
influence relationship between the different companies in 
the investigated sample. 

In the recent year, Roverato and Castelo (2017) 
employ the use of partial correlation to replace marginal 
correlations, which are used to measure the degree of 
co-expression between genes. This is as a result of the 
fact that marginal correlations (Pearson or Spearman 
correlation coefficients) are very sensitive to indirect 
effects while analyzing the effects of genetic interaction 
on yeast. Extensively, the application of partial correlation 
has become widely accepted, most especially in the 
fields of biology, medicine, economics or accounting, 
engineering, and so on.

3. DATA AND METHODOLOGY
3.1 The Datasets
R has over ten thousand datasets enclosed by many 
packages. A package called ‘Applied Econometrics with 
R’, abbreviated as AER, houses an annual multiple time 
series datasets of Klein’s Model I for the US economy 
between 1920 and 1941 inclusive. It is named ‘KleinI’ 
in R and comprises nine variables: consumption ( ), 

corporate profit ( ), private wage bill ( ), investment 

( ), previous year’s capital stock ( 5x ), gross national 

product ( ), government wage bill ( 7x ), government 

expenditure ( 8x ), and taxes ( 9x ). From these, we select 

only five of them for this study: , , , , and 7x  
respectively. This is done to justify the basic assumptions 
involved in using partial correlation.

To gain accessibility to the datasets, the following R 
commands will pave way with the assurance that your 
system is internet connected:

install.packages(“AER”) (1)
While running the code in (1), the system will request 

you to choose a CRAN Mirror from a list to be displayed 
(appearing from the cloud), it is expected that a mirror 
that is very close to your location, for instance, Australia 
(Canberra) [https], UK (Bristol) [https], Uruguay [https], 
and so on, should be chosen and press ‘ok’ button to 
proceed the installation process.

After the successful installation of AER package, the 
next code is to call the library before its application. The 
command to achieve this task is written in (2) as follows:

library (AER) (2)
In R, a library is a repository arena where relevant 

commands are stored before usage. It could be recalled 
by running the command ‘library ( )’. However, we may 
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still define a library as location on disk where packages 
are installed, saved, and recalled. After library command, 
therefore, the next code is:

data(KleinI) (3)
The command in (3) is used to bring the datasets into 

R environment. Having done this, we may decide to view 
the datasets by running the command below:

View(KleinI) (4)
Considering the fact that ‘View(KleinI)’ can neither be 

copied nor taken from one location to another; rather it 
can only be viewed on the computer screen. However, R 

provides a convenient command to access the datasets in 
Microsoft Office Excel Comma Separated Values (CSV) 
format. The code is:

write.csv(KleinI, “data_for_this_study.csv”) (5)
In all operating systems, R’s default directory is 

located at ‘My Documents’ or ‘Documents’. After running 
the code in (5), we will visit the default location of R’s 
directory and check for the file named “data_for_this_
study” file; it must have been dropped in CSV format. 
From there, we can access the datasets as contained in 
Table 2.

Table 2
Klein’s Model I for the US Economy: 1920-1941 

Year 7x
1920 39.8 12.7 28.8 2.7 180.1 44.9 2.2 2.4 3.4

1921 41.9 12.4 25.5 -0.2 182.8 45.6 2.7 3.9 7.7

1922 45 16.9 29.3 1.9 182.6 50.1 2.9 3.2 3.9

1923 49.2 18.4 34.1 5.2 184.5 57.2 2.9 2.8 4.7

1924 50.6 19.4 33.9 3 189.7 57.1 3.1 3.5 3.8

1925 52.6 20.1 35.4 5.1 192.7 61 3.2 3.3 5.5

1926 55.1 19.6 37.4 5.6 197.8 64 3.3 3.3 7

1927 56.2 19.8 37.9 4.2 203.4 64.4 3.6 4 6.7

1928 57.3 21.1 39.2 3 207.6 64.5 3.7 4.2 4.2

1929 57.8 21.7 41.3 5.1 210.6 67 4 4.1 4

1930 55 15.6 37.9 1 215.7 61.2 4.2 5.2 7.7

1931 50.9 11.4 34.5 -3.4 216.7 53.4 4.8 5.9 7.5

1932 45.6 7 29 -6.2 213.3 44.3 5.3 4.9 8.3

1933 46.5 11.2 28.5 -5.1 207.1 45.1 5.6 3.7 5.4

1934 48.7 12.3 30.6 -3 202 49.7 6 4 6.8

1935 51.3 14 33.2 -1.3 199 54.4 6.1 4.4 7.2

1936 57.7 17.6 36.8 2.1 197.7 62.7 7.4 2.9 8.3

1937 58.7 17.3 41 2 199.8 65 6.7 4.3 6.7

1938 57.5 15.3 38.2 -1.9 201.8 60.9 7.7 5.3 7.4

1939 61.6 19 41.6 1.3 199.9 69.5 7.8 6.6 8.9

1940 65 21.1 45 3.3 201.2 75.7 8 7.4 9.6

1941 69.7 23.5 53.3 4.9 204.5 88.4 8.5 13.8 11.6

Source: R Core Team (2020)
3.2 Theoretical Framework
There are some basic assumptions to be adhered to before 
making use of partial correlation. Some of these basic 
assumptions include linearity, normality, and outliers. 
The theoretical backgrounds for authenticating these 
assumptions are extensively discussed hereunder.
3.2.1 Linearity
There is need to check that variables are linearly related. 
This could be checked by plotting scatter diagrams. We 
consider the first variable as the baseline and obtain the 
graphical representation of the baseline variable with 
others. These visualizations are achieved with the help of 
R programming software (R Core Team, 2020).

3.2.2 Normality
Before obtaining partial correlation coefficients, it is 
expected that variables should be approximately normally 
distributed. This is achieved using Shapiro-Wilk test of 
normality, which is embedded in R.
3.2.3 Outlier
Recall that partial correlation is sensitive to outliers, 
which can have a very wide effect on the line of best 
fit and the correlation coefficient, thereby leading to 
incorrect conclusions regarding the data. It is expected 
that datasets should not contain significant outlier before 
choosing partial correlation technique for measuring the 
degree of association between two variables when the 
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influence(s) of other variable(s) are held constant. Outliers 
are simply single data points within our datasets that do 
not follow the usual pattern. If the appearance of outliers 
is significant, it is advisable to drop the use of partial 
correlation technique to avoid misleading inferences. In 
this study, we apply box plot to check the tolerance of 
outlying effects on our datasets.

3.3 Estimation Procedures
This paper studies four different methods of computing 
the coefficients of partial correlation as earlier said. 
Each of the four methods is discussed with practical 
illustrations. The first, second and third order partial 
correlation coefficients, represented by , 

, and , could be computed through conventional 
approach, variance-covariance matrix method, regression 
residual’s approach, and ordinary least square method.

In this paper, we represent consumption by , 

corporate profit by , private wage bill by , gross 

national product by , and government wage bill by 

. Therefore, for instance, the symbol  means first 
order partial correlation coefficient between consumption 
and corporate profit holding the influence of private wage 
bill constant.

However, the theoretical procedures for each of the 
methods are extensively discussed with the inclusion 
of some R codes to serve as calculator, to avoid 
computational errors and to reduce computational stress.
3.3.1 Computational Procedures of Conventional 
Approach
We discuss some of the existing formula for computing 
partial correlation coefficients using conventional 
approach. The first order partial correlation coefficient is 
computed by:

where , , and  are the PPM correlation 

coefficient between consumption and corporate profit, 
between consumption and private wage bill, and finally 
between corporate profit and private wage bill.

Also, the second order partial correlation coefficient 
between consumption and corporate profit holding the 
influence of private wage bill and gross national product 
constant could be obtained by the following formula:

where , , and  are the respective first 

o rder  par t i a l  cor re la t ion  coeff ic ien t s  be tween 
consumption and corporate profit given private wage 
bill, between consumption and gross national product 
given private wage bill, and between corporate profit 
and gross national product given private wage bill.

As for the case of third order partial correlation 
coefficient between consumption and corporate profit 
holding the influence of private wage bill, gross national 
product and government wage bill constant, denoted by 

, to the best of our knowledge, no this kind of 

formula has been developed to handle this correlation in 
the literature. This indicates that this method is restricted 
only to first and second partial correlation coefficients. 
3.3.2 Computational Procedures From Variance-
Covariance Matrix Method
Given a 33 X matrix of variance-covariance:

where each of the S can be obtained from raw datasets 
as follows:
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Under the variance-covariance matrix approach, the 
first order partial correlation coefficient is computed by:

It should be noted that this method could only handle 
first order partial correlation coefficient. Based on our 
knowledge, no further formula has been devised yet to 
handle more than first order partial correlation.
3.3.3 Computational Procedures of Regression 
Residual’s Approach
The coefficients of partial correlation of any order can be 
numerically obtained by the regression residual’s method. 
This approach is efficient in terms of applicability and 
even in terms of time. It is very easy to understand even 
by the non-statisticians. Given our datasets, we are 
expected to compute three different partial correlation 
coefficients. However, this method can handle all the 
computational situations as far as partial correlation is 
concerned. Each of the procedures is tailored as follows:
3.3.3.1 First Order
In an attempt to compute the first order partial correlation 
coefficient between consumption and corporate profit 
holding the influence of private wage bill constant, the 
following steps are necessary:

Step I: Regress  on 
3x  and obtain the residual of 

the model ( )
Step II: Regress  on 

3x  again and obtain the 
residual of the model ( )

Step III: Thereafter, obtain the PPM between  and 

. 
Result obtained as PPM becomes the first order partial 

correlation coefficient ( ) between consumption and 
corporate profit when the influence of private wage bill is 
held constant.
3.3.3.2 Second Order
On the other hand, to obtain the second order partial 
correlation coefficient between consumption and 
corporate profit holding the influences of private wage bill 
and gross national product constant, the steps are tailored 
as follows:

Step I: Regress  on  and and obtain the 
residual of the model ( )

Step II: Regress  on  and  again and obtain 
the residual of the model ( )

Step III: Thereafter, obtain the PPM between  and 
. 
Kindly note that result obtained as PPM becomes 

the second order partial correlation coefficient (
) between consumption and corporate profit when the 
influences of private wage bill and gross national product 
are removed.
3.3.3.3 Third Order
Also, to obtain the third order partial correlation 
coefficient between consumption and corporate profit 
holding the influences of private wage bill, gross national 
product and government wage bill constant, the following 
steps should be followed:

Step I: Regress  on ,  and  and obtain the 
residual of the model, denoted by 

Step II: Regress  on ,  and  again and 
obtain the residual of the model denoted by 

Step III: Thereafter, compute the PPM between  
and . 

Kindly note that result obtained as PPM becomes 
the third order partial correlation coefficient (
) between consumption and corporate profit when the 
influences of private wage bill, gross national product and 
government wage bill are removed.
3.3.4 Computational Procedures of OLS Approach
Besides regression residual’s method, partial correlation 
coefficients could also be obtained from ordinary least 
square (OLS) approach. This method is also efficient 
in terms of application and time. Though involves little 
computational stress if done manually, its numerous 
advantages cannot be quantified. With the aid of the 
sophisticated programming software like R, the stress 
involved would be weightless. This approach handles all 
orders of partial correlation coefficients, be it first, second, 
third or more. Here, interest centers on obtaining the 
estimates of OLS of the first variable on others. However, 
the computational procedures, for instance, the first order 
partial correlation, , are tailored below:

Step I: Obtain the OLS estimates of multiple linear 
regression model of  on  and 
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Step II: Obtain the estimates of standard error with the 
corresponding T-test for each coefficient

Step III: Compute  using the formula (24) given 
below

where  means degree of freedom for error, which is 

computed as  (Note that = number of all 
the variables in any particular model formed).

However, the same process will be repeated when 
we are to obtain the second and third partial correlation 
coefficients. Many of these calculations would be figured 
out by the use of R programming software version 4.0.3 (R 
Core Team, 2020).

3.4 The R Syntax
The commands written in R language (R Core Team, 
2020) to accomplish all the statistical tasks are succinctly 
detailed in Table 3:

Table 3
The Breakdown of R Language

S/N R commands Uses Remarks
1. library(AER) To recall the library AER before using it

2. data(KleinI) To figure the dataset into R environment

3. View(KleinI) To view the dataset

4. head(KleinI) To see only the first 6 elements of the data

5.  = KleinI[ , 1] To extract the variable labeled  

6. 2x  = KleinI[ , 2] To extract the variable labeled 

7. 3x  = KleinI[ , 3] To extract the variable labeled 

8. 6x  = KleinI[ , 6] To extract the variable labeled 

9. 7x  = KleinI[ , 7] To extract the variable labeled 

10. mydata=data.frame( , , , , ) To combine all the variables

11. cor( , 2x , method = ‘pearson’) PPM between  and 0.7243439

12. cor( , 3x , method = ‘pearson’) PPM between  and 0.9664623

13 cor( , 6x , method = ‘pearson’) PPM between  and 0.9604946

14. cor( , , method = ‘pearson’) PPM between and 0.7626755

15. cor( , 6x , method = ‘pearson’) PPM between  and 0.8409359

16. cor( , 6x , method = ‘pearson’) PPM between  and 0.9815224

17. library(ggm) To recall the library ggn before using it

18. pcor(c(“ ”, “ ”, “ ”), var(mydata)) To obtain -0.0767811

19. pcor(c(“ ”, “ ”, “ ”, “ ”), var(mydata)) To obtain -0.3984185

20. pcor(c(“ ”, “ ”, “ ”, “ ”, “ ”), var(mydata)) To obtain 0.1861561

Source: Authors’ computation (2021)

4. RESULTS AND DISCUSSION
4.1 Confirmation of Assumptions
We examine the datasets by checking the validity of 
all the basic assumptions of partial correlation before 

obtaining any order of the coefficient. This examination of 
each assumption is detailed as follows:
4.1.1 Checking Linearity Assumption
The following visualizations (Figures I-IV) explain the 
linearity and or otherwise of our datasets. 
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Figure 1
Testing for Linearity between Consumption and 
Corporate Profit

Figure 2
Testing for Linearity between Consumption and 
Private Wage Bill

Figure 3
Testing for Linearity between Consumption and Gross 
National Product

Figure 4
Testing for Linearity between Consumption and 
Government Wage Bill

Critical examination of the four infographics (Figures 
I-IV) shows that linearity assumption is not violated 
since almost all the data points fall within the eclipse. We 
therefore conclude that this assumption is upheld.

4.1.2 Ascertaining Normality Assumption
The following results in Table 4 show the evidences of 
upholding normality assumption as reported by the use of 
Shapiro-Wilk statistical test.

Table 4
Reports of Normality Test

S/N Variable Shapiro-wilk statistic (W) P-value Remarks
1. Consumption 0.98453 0.9713 No violation of normality assumption
2. Corporate Profit 0.95829 0.4555 No violation of normality assumption
3. Private Wage Bill 0.95412 0.3802 No violation of normality assumption
4. Gross National Product 0.98820 0.1817 No violation of normality assumption
5. Government Wage Bill 0.91626 0.0636 No violation of normality assumption

Source: Authors’ computation (2021)
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4.1.3 Checking Existence of Outliers
The third assumption is to check if outlying effect is 
significant in the datasets used. This could be achieved by 
employing the use of box plot. Report of this is presented 
in Figure V.

Figure 5
Testing for outliers’ effect on the datasets

Careful study of the Figure V shows that the two 
outliers surveyed could be still be accommodated since 
they are scattered evenly between private wage bill and 
gross national product. Therefore, the outliers are said to 
be tolerable and the analysis by partial correlation is still 
perfectly okay for the datasets.

4.2 Computation of 1st Order Partial Correlation 
Coefficient
We compute the first order partial correlation coefficient 
by each of the four methods theoretically discussed in our 
earlier section. All the methods discussed in this study can 
handle the first order. 
4.2.1 Computation by Conventional Approach
The following statistics are obtained from our datasets 
with R syntax:

The matrix of PPM correlation coefficients for , 
and is obtained as follows:

Therefore, the first order partial correlation coefficient 
is obtained as follows:

3.2.2 Computation by Variance-covariance Matrix 
Method 
The following matrix of variance-covariance for , 
and  is obtained via R engine:

From S, compute the following:

Therefore, the first order partial correlation coefficient 
is obtained as follows:

4.2.3 Computation by Regression Residual’s Approach 
Within R environment, the first and second regression 
models are labeled “regression.1” and “regression.2” 
while their residuals are tagged “residual.1” and 
“residual.2” respectively. Therefore, the codes are:

)~(1. 31 xxlmregression = ; summary(regression.1)

)~(2. 32 xxlmregression = ; summary(regression.2)

residual.1=resid(regression.1); write.csv(residual.1, 
“RES.1.csv”)

residual.2=resid(regression.2); write.csv(residual.2, 
“RES.2.csv”)

cor(residual.1, residual.2, method=”pearson”)
The results for these codes are reported in Tables 5 - 7.

Table 5
Report of Linear Regression Model of  on 

Parameters Estimates Standard Error T-value P-value

Intercept 13.1348 2.42476 5.417 0.00003

Coefficient of 3x 1.1165 0.06634 16.830 0.00000

Multiple R-squared = 0.934; Multiple R-squared (Adjusted) = 0.9308; F-statistic = 283.3, Overall P-value = 0.00000
The model is 

 
Source: Authors’ computation (2021)
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Table 6
Report of Linear Regression Model of  on 

Parameters Estimates Standard Error T-value P-value
Intercept - 1.1502 3.50255 - 0.4290 0.67300

Coefficient of 3x 0.5054 0.09583 5.273 0.00000

Multiple R-squared = 0.5817; Multiple R-squared (Adjusted) = 0.5608; F-statistic = 27.81, Overall P-value = 0.00000
The model is 

 
Source: Authors’ computation (2021)

Table 7
Report of Errors for Linear Regression Models

S/N Residual.1 Residual.2 Product Moment Correlation (PPM) of the Residuals
1. -5.4907 -0.3523
2. 0.29382 1.01535
3. -0.8490 3.59502
4. -2.0083 2.66935
5. -0.3850 3.77042
6. -0.0598 3.71240
7. 0.20716 2.20170
8. 0.74890 2.14903
9. 0.39742 2.79207
10. -1.4473 2.33084
11. -0.4511 -2.05097
12. -0.7549 -4.53279
13. 0.08598 -6.15337
14. 1.54424 -1.70070
15. 1.39954 -1.66193
16. 1.09657 -1.27584
17. 3.47708 0.504909
18. -0.2123 -1.91756
19. 1.71395 -2.50258
20. 2.01776 -0.52076
21. 1.62157 -0.13895
22. -2.9456 -1.93334

Source: Authors’ computation (2021)
4.2.4 Computation by OLS Approach 
The parameter estimation of multiple linear regression model of  on  and  is obtained via the use of R syntax as 
follows:
Table 8
Report of Multiple Linear Regression Model of  on  and 

Parameters Estimates Standard Error T-value P-value

Intercept 13.05497 2.49178 5.2390 0.00000

Coefficient of 2x - 0.0532 0.15835 - 0.336 0.74100

Coefficient of 3x 1.14339 0.10492 10.8970 0.00000

Multiple R-squared = 0.9344; Multiple R-squared (Adjusted) = 0.9275; F-statistic = 135.4, Overall P-value = 0.00000
The model is 

Source: Authors’ computation (2021)

Therefore, we compute the first order partial correlation as follows:

4.3 Computation of 2nd Order Partial Correlation 
Coefficient
Here, we obtain the second order partial correlation 

coefficient by all the methods except that of variance-
covariance approach. Each of the remaining methods is 
tailored as follows:
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4.3.1 Computation by Conventional Approach
The matrix of PPM correlation coefficients for , , 

and  is obtained as follows:

Therefore, the second order partial correlation 
coefficient is obtained as follows:

4.3.2 Computation by Regression Residual’s Approach 
Let’s represent the first and second regression models by 
“regression.11” and “regression.22” while their residuals 
could be named “residual.11” and “residual.22” within R 
environment. Therefore, the codes are:

Table 9
Report of Multiple Linear Regression Model of  on 

, and 

Parameters Estimates Standard 
error T-value P-value

Intercept 13.3460 2.4216 5.511000 0.00000

Coefficient of 3x 0.74830 0.3451 2.168000 0.04310

Coefficient of 6x 0.21980 0.2023 1.087000 0.29060

Multiple R-squared = 0.9397; Multiple R-squared (Adjusted) = 
0.9314; F-statistic = 143.5, Overall P-value = 0.00000
The model is

 

Source: Authors’ computation (2021)

Table 10
Report of Multiple Linear Regression Model of  on 

, and 

Parameters Estimates Standard 
error T-value P-value

Intercept - 0.5609 2.39990 - 0.2340 0.81778

Coefficient of 3x - 1.1351 0.34200 - 3.3180 0.00361

Coefficient of 6x 0.9794 0.2004 4.88600 0.00010
Multiple R-squared = 0.8146; Multiple R-squared (Adjusted) = 
0.7951; F-statistic = 41.75, Overall P-value = 0.00000

The model is 
Source: Authors’ computation (2021)

Table 11
Report of Errors for the two Multiple Linear Regression Models

S/N Residual.1 Residual.2 Product moment correlation (PPM) of the residuals
1. -4.96791 1.976717
2. -0.55245 -2.7546
3. -1.28527 1.651462
4. -2.23798 1.646201
5. -0.66633 2.517124
6. -0.64618 1.100142
7. -0.3023 -0.06786
8. 0.335618 0.307926
9. 0.440859 2.985585

10. -1.18017 3.520785
11. -0.16086 -0.75805
12. -0.00186 -1.17811
13. 0.814345 -2.90864
14. 1.91261 -0.05968
15. 1.5299 -1.08119
16. 1.151061 -1.03309
17. 3.032478 -1.4757
18. 0.384017 0.739029
19. 2.180604 -0.42371
20. 1.845723 -1.28715
21. 1.338481 -1.40007
22. -2.96439 -2.01712

Source: Authors’ computation (2021)

4.3.3 Computation by OLS Approach 
The parameter estimation of multiple linear regression 

model of  on  and  is obtained via the use of R 

syntax as follows:
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Table 12
Report of Multiple Linear Regression Model of  on 

,  and 

Parameters Estimates Standard 
error T-value P-value

Intercept 13.1205 2.2853 5.7410 0.00000

Coefficient of 2x - 0.4020 0.2181 - 1.843 0.08190

Coefficient of 3x 0.29200 0.4088 0.7140 0.48420

Coefficient of 6x 0.61360 0.2863 2.1430 0.04600

Multiple R-squared = 0.9478; Multiple R-squared (Adjusted) = 
0.9391; F-statistic = 108.9, Overall P-value = 0.00000
The model is

 

Source: Authors’ computation (2021)

Therefore, we compute the first  order partial 
correlation as follows:

4.4 Computation of 3rd Order Partial Correlation 
Coefficient
In handling the computation of third order partial 
correlation coefficient, only two methods: regression 
residual’s approach and OLS method. The remaining two 
methods could not survive in this scenario. Results of the 
practical illustrations are presented as follows:
4.4.1 Regression Residual’s Approach 
Let’s the first and second regression models be denoted 
by “regression.111” and “regression.222” while their 
residuals could be labeled as “residual.111” and 
“residual.222” while using R engine. The codes are:

Table 13
Report of Multiple Linear Regression Model of  on 

,  and 7x
Parameters Estimates Standard error T-value P-value

Intercept 14.9006 1.7872 8.337000 0.00000
Coefficient of 3x 0.26830 0.2734 0.981000 0.33943

Coefficient of 6x 0.41480 1.1531 2.710000 0.01436

Coefficient of 7x 0.83480 0.1947 4.287000 0.00044

Multiple R-squared = 0.9693; Multiple R-squared (Adjusted) = 
0.9642; F-statistic = 189.3, Overall P-value = 0.00000
The model is

 

Source: Authors’ computation (2021)

Table 14
Report of Multiple Linear Regression Model of  on 

,  and 7x
Parameters Estimates Standard error T-value P-value

Intercept - 2.0636 1.8147 - 1.1370 0.2704

Coefficient of 3x - 0.6711 0.2776 - 2.4180 0.0265

Coefficient of 0.79100 0.1554 5.08900 0.0000

Coefficient of 
7x - 0.8070 0.1977 - 4.0820 0.0007

Multiple R-squared = 0.9037; Multiple R-squared (Adjusted) = 
0.8877; F-statistic = 56.32, Overall P-value = 0.00000
The model is

 

Source: Authors’ computation (2021)

6x

Table 15
Report of Errors for the two Multiple Linear Regression Models

S/N Residual.1 Residual.2 Product moment correlation (PPM) of the residuals
1. -3.2866 0.351488
2. -1.00893 -2.31335
3. -0.96182 1.338801
4. -0.9944 0.444106
5. 0.333773 1.550375
6. 0.230309 0.252891
7. 0.865971 -1.19716
8. 1.41548 -0.73592
9. 2.041734 1.438107
10. 0.690982 1.712046
11. 1.041809 -1.92061
12. 0.588221 -1.74852
13. 0.120724 -2.23815
14. 0.572634 1.2356
15. -0.03258 0.429174
16. -0.16297 0.237113
17. 0.743464 0.736961
18. 0.247026 0.87145
19. 0.663957 1.04235
20. 0.201385 0.302341
21. -0.04926 -0.05862
22. -3.26091 -1.73049

Source: Authors’ computation (2021)
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4.3.3 Computation by OLS Approach 
The parameter estimation of multiple linear regression 
model of  on  and  is obtained via the use of R 

syntax as follows:

Table 12
Report of Multiple Linear Regression Model of  on 

,  ,  and 7x

Parameters Estimates Standard error T-value P-value

Intercept 15.2790 1.8707 8.1680 0.0000

Coefficient of 2x 0.18330 0.2347 0.7810 0.4454

Coefficient of 3x 0.39130 0.3181 1.2300 0.2354

Coefficient of 6x 0.26970 0.2417 1.1160 0.2799

Coefficient of 7x 0.98270 0.2732 3.5980 0.0022

Multiple R-squared = 0.9703; Multiple R-squared (Adjusted) = 
0.9634; F-statistic = 139.1, Overall P-value = 0.00000
The model is 

Source: Authors’ computation (2021)

Therefore, we compute the first  order partial 
correlation as follows:

5. CONCLUSION AND RECOMMENDATION
In our research, we have extensively discussed, with 
detailed illustrations, the computational techniques both 
manually and electronically to obtain the first, second, 
and third partial correlation coefficients. Our datasets are 
obtained from R engine. To the best of our knowledge, 
we have demonstrated the four different methods of 
computing partial correlations, and recommended the best 
in a number of scenarios. 

When our interest is centered on computing first order 
partial correlation coefficient, all the four methods discussed 
can flow but the conventional method is recommended 
to be least time-consuming. But when we are interested 
in computing the second order, only three methods: 
conventional, regression residual’s, and OLS methods can 
handle such with recommendation that OLS method is the 
best amongst all in terms of time and computational stress. 

However, from our practical illustrations, conventional 
method drops out of the three that reach the second 
stage, keeping only two: regression residual’s, and OLS 
methods, while interested in computing higher order 
partial correlation coefficients. Therefore, we recommend 
the use of regression residual’s approach and OLS 

method to obtain third and higher order partial correlation 
coefficients. Both methods are straight-forward, reliable, 
understandable, explicit, and detailed to account for any 
order of partial correlations.
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