Cross-Sectional Analysis of Methods of Computing Partial Correlation Coefficients: A Self-Explained Note With R Syntax

Timothy A. Ogunleye ${ }^{[a], *}$; Kehinde K. Adesanya ${ }^{[b]}$; Oluwatosin J. Akinsola ${ }^{[c]}$; Godwill I. Wilcox ${ }^{[d]}$

[^0]Received 29 December 2021; accepted 24 January 2022
Published online 26 March 2022

Abstract

This paper examines four different methods of computing partial correlation coefficients. These include conventional method, variance-covariance matrix approach, regression residual's approach, and OLS method. Each of these is fully illustrated with practical examples as well as R syntax. Applicability of each of the methods is discussed in our illustrations. Strength and weakness of each method are extensively detailed. It's, however, discovered that none of the basic assumptions of partial correlation: linearity, normality, and non-existence of outliers is violated after performing statistical checks on the datasets used. The study, therefore, recommends the best method(s) of computing partial correlation coefficients when at least one variable is held constant, thereby adding more invaluable knowledge to the existing literatures. Finally, the study further recommends the best method in each scenario with illustrative examples as evidences.

Key words: Conventional method; OLS method; Partial correlation; Regression residual's approach; Variance-covariance matrix method

[^1]JEL Codes: JEL C63 (Computational Techniques) and JEL C65 (Miscellaneous Mathematical Tools)

1. INTRODUCTION

In both parametric and non-parametric statistical situations, where the term correlation may be mentioned, simply the word correlation means an association that exists between or among (as the case may be) two or more variables, where perhaps one depends on the other. On the other hand, correlation coefficient could be defined as a measurement of the strength of such association. This measurement is usually in two decimal places, making it easier to interpret in form of percentage. In another dimension, coefficient of correlation could mean the degree at which one variable is associated with the other.

According to Akoglu (2018) and Merriam-webster dictionary (2020), correlation is defined as a relation that exists between phenomena or things (or between mathematical or statistical variables) which tend to vary, be associated, or occur together in a way not expected by chance alone. Also, Mukaka (2012) defines correlation as a statistical method used to assess a possible linear association between two continuous variables. It is assumed to be simple both in calculation and interpretation. However, misuse of correlation is so common among researchers that some statisticians have wished that the method had never been devised at all (Mukaka, 2012; Bishara and James, 2017).

The term 'partial correlation' is defined as the type of correlation that exists between two random variables, where one depends on the other, for which at least one other variable is held constant. Though it exists among at least three variables, the first two variables are the main target variables with all other variables referred to as controlling variables. However, the number of controlling variable(s) determines the order of the partial correlation.

If there is no controlling variable, it is called zero-order partial correlation, and equivalently, it is known as Pearson's correlation coefficient.

The present study examines four different methods of computing partial correlation coefficients. Each of the methods is fully illustrated with practical examples as well as R syntax. Applicability of each of the methods is discussed in our illustrations. Strength and weakness of each method are extensively detailed. This study recommends the best method in each scenario with illustrative evidences. Therefore, the study aims at providing the best method of computing partial correlation coefficients when one, two and more variables are held constant, thereby adding more invaluable knowledge to the existing literatures. The first chapter is introduction followed by literature review, which is subdivided into theoretical and empirical literature. The third chapter, data and methodology, comprising the data, theoretical framework, model specification, and estimation procedure, are extensively discussed. Descriptive statistics, preestimation results, and estimation results come next as the fourth, while the last chapter discusses conclusion and recommendation.

2. LITERATURE REVIEW

2.1 Theoretical Literature

Yule (1907), Fisher (1924) and Fieller, et. al. (1957) report that any correlation coefficient shouldn't be more than positive one $(+1)$ and also shouldn't be less than negative one (-1). Occasionally sometimes, the coefficient could be zero, which indicates that no iota of association exist between the variables involved. Therefore, all correlation coefficients should be between -1 and +1 respectively. According to Hinkle, et. al. (2018) and Egozcue, et. al. (2018), the following rules of thumb are succinctly explained in Table 1 for the interpretation of correlation coefficients.
Table 1
Rules of Thumb for the Interpretation of Correlation Coefficient

S/N	Correlation coefficient	Interpretation
1.	Between 0.90 and 1.00 (Between-0.90 and-1.00)	Very high positive (negative) correlation
2.	Between 0.70 and 0.89 (Between-0.70 and-0.89)	High positive (negative) correlation
3.	Between 0.50 and 0.69 (Between-0.50 and-0.69)	Moderate positive (negative) correlation
4.	Between 0.30 and 0.49 (Between- 0.30 and- 0.49)	Low positive (negative) correlation
5.	Between 0.01 and 0.29 (Between-0.01 and-0.29)	Negligible or weak correlation
6.	When the value of the correlation $=0.00$	Zero correlation or no correlation

Source: Hinkle, et. al. (2018) and Egozcue, et. al. (2018)

In a situation where variables of interest are continuous, thereby producing cross-sectional data sets, four prominent correlation coefficients are very popular and these include: simple, multiple, partial and canonical correlation coefficients. A correlation is said to be simple if the degree of association between only two variables is computed using either Pearson's Product Moment (PPM) technique, Spearman's Rank technique, or Kendall's Tau technique. And, when the result is positive, it means increase in one variable leads to corresponding increase in the other variable, and vice-versa. Also, whenever the coefficient of correlation is negative, it is indicates that increase in one variable results to decrease in the other, and vice-versa. When we have zero value as the correlation coefficient, it shows that no association exists, indicating that when one variable increases or decreases, the other variable remains stagnant.

A multiple correlation exists between a dependent variable and at least two independent variables. It is an index to measure how well a dependent variable behaves when correlated with two or more independent variables. In statistics, the coefficient of multiple correlation is a measure of how well a given variable can be predicted using a linear function of a set of other variables (Kynčlová, et. al., 2017). It is the correlation between the variable>s values and the best predictions that can be computed linearly from the predictive variables (Langfelder and Steve, 2012).

The term 'canonical correlation', which was first introduced by Hotelling (1936), is a branch of correlation commonly found in multivariate analysis where the degree of association between a set of linear combination of variables and another set of linear combination of variables is measured. Invariably, we could say that canonical correlation analysis is a method used to identify and measure the associations between two sets of variables, since canonical itself is a statistical term for analyzing latent variables. In obtaining canonical correlation coefficient, however, at least two variables must be contained in each set of linear combination of variables.

On the other hand, we could define a partial correlation coefficient as a measurement of the strength of association between two variables, while simultaneously keeping the influence of at least one other variable constant. Specifically, this type of correlation analysis is quite different from the rest three earlier discussed. In this case, more than two random variables are involved, but these variables do not require partition unlike canonical correlation analysis. Simply, it is situation where we measure the degree of association between two variables of interest while holding the influence of all other variables constant. Partial correlation, however, quantifies linear association between two variables while adjusting for the influence of the remaining variables (Lonas, 2020).

2.2 Empirical Literature

Partial correlation can be used to statistically control for unwanted variables (Serlin and Harwell, 2007). In probability and statistics, partial correlation measures the degree of association between two random variables, with the effect of a set of controlling variables random variables removed. In a formal situation, the partial correlation between x_{1} and x_{2} given a set of n-controlling variables $y=\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}$, written as $\rho_{x_{1} x_{2} \mid y}$, is the correlation between the residuals $e_{x_{1}}$ and $e_{x_{2}}$ resulting from the linear regression of x_{1} with y, and of x_{2} with y, respectively (Guilford and Fruchter, 1973; Lonas, 2020). The first-order partial correlation (that is, when $n=$

1) is the difference between a correlation and the product of the removable correlations divided by the product of the coefficients of alienation of the removable correlations (Fisher, 1924; Guilford and Fruchter, 1973; Lonas, 2020).

However, partial correlations are only valid when the pattern of relationships between the variables reflects a meaningful model (Waliczek, 1996). According to Pedhazur (1982), controlling variables without regard to the theoretical considerations about the pattern of relations among them may amount to a distortion of reality and result in misleading or meaningless results. It is also important consideration is that the researcher must know exactly what dependent variable is being measured after the influence of one or more independent variable(s) has been removed.

In 1988, Horwitz and Rapoport engage in the use of method of partial correlation analysis to characterize the brain in terms of functional association among brain regions. Therefore, correlation coefficients between pairs of regional glucose metabolic rates were extensively discussed in connection with assessing patterns of association among brain regions in humans and animals. The duo argue that partial correlation coefficients (partialling out the global metabolic rate) or correlations between reference rates (regional to global metabolic rate) should be used in removing the distorting influence of systematic intrasubject differences in glucose utilization.

Also, a partial correlation analysis was used by Aloe (2013) while studying the synthesis of partial effect sizes. Three partial effect sizes for the correlation were focused on: the standardized slope, the partial correlation, and the semi-partial correlation. Out of these, Aloe reports that partial correlation was greatly employed and most useful for meta-analysis in two common situations: when primary studies reporting regression models do not report bivariate correlations, and when it is specific interest to partial out the effect of other variables.

In a paper authored by Ha and Sun (2014), a partial correlation was used to handle the problem of construction gene co-expression network. Also, Kenett, et. al (2015)
apply partial correlation for financial marketing strategies. However, in the analysis of the dependency network methodology, the application of partial correlation has really helped to uncover dependency and, also to influence relationship between the different companies in the investigated sample.

In the recent year, Roverato and Castelo (2017) employ the use of partial correlation to replace marginal correlations, which are used to measure the degree of co-expression between genes. This is as a result of the fact that marginal correlations (Pearson or Spearman correlation coefficients) are very sensitive to indirect effects while analyzing the effects of genetic interaction on yeast. Extensively, the application of partial correlation has become widely accepted, most especially in the fields of biology, medicine, economics or accounting, engineering, and so on.

3. DATA AND METHODOLOGY

3.1 The Datasets

R has over ten thousand datasets enclosed by many packages. A package called 'Applied Econometrics with R', abbreviated as AER, houses an annual multiple time series datasets of Klein's Model I for the US economy between 1920 and 1941 inclusive. It is named 'KleinI' in R and comprises nine variables: consumption $\left(X_{1}\right)$, corporate profit (x_{2}), private wage bill $\left(x_{3}\right)$, investment (x_{4}), previous year's capital stock (x_{5}), gross national product $\left(x_{6}\right)$, government wage bill (x_{7}), government expenditure $\left(x_{8}\right)$, and taxes $\left(x_{9}\right)$. From these, we select only five of them for this study: $x_{1}, x_{2}, x_{3}, x_{6}$, and x_{7} respectively. This is done to justify the basic assumptions involved in using partial correlation.

To gain accessibility to the datasets, the following R commands will pave way with the assurance that your system is internet connected:
install.packages("AER") (1)
While running the code in (1), the system will request you to choose a CRAN Mirror from a list to be displayed (appearing from the cloud), it is expected that a mirror that is very close to your location, for instance, Australia (Canberra) [https], UK (Bristol) [https], Uruguay [https], and so on, should be chosen and press 'ok' button to proceed the installation process.

After the successful installation of AER package, the next code is to call the library before its application. The command to achieve this task is written in (2) as follows:
library (AER) (2)
In R , a library is a repository arena where relevant commands are stored before usage. It could be recalled by running the command 'library ()'. However, we may
still define a library as location on disk where packages are installed, saved, and recalled. After library command, therefore, the next code is:

data(KleinI) (3)

The command in (3) is used to bring the datasets into R environment. Having done this, we may decide to view the datasets by running the command below:

View(KleinI) (4)

Considering the fact that 'View(KleinI)' can neither be copied nor taken from one location to another; rather it can only be viewed on the computer screen. However, R
provides a convenient command to access the datasets in Microsoft Office Excel Comma Separated Values (CSV) format. The code is:
write.csv(KleinI, "data_for_this_study.csv") (5)
In all operating systems, R's default directory is located at 'My Documents' or 'Documents'. After running the code in (5), we will visit the default location of R's directory and check for the file named "data_for_this study" file; it must have been dropped in CSV format. From there, we can access the datasets as contained in Table 2.

Table 2
Klein's Model I for the US Economy: 1920-1941

Year	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}	x_{8}	x_{9}
1920	39.8	12.7	28.8	2.7	180.1	44.9	2.2	2.4	3.4
1921	41.9	12.4	25.5	-0.2	182.8	45.6	2.7	3.9	7.7
1922	45	16.9	29.3	1.9	182.6	50.1	2.9	3.2	3.9
1923	49.2	18.4	34.1	5.2	184.5	57.2	2.9	2.8	4.7
1924	50.6	19.4	33.9	3	189.7	57.1	3.1	3.5	3.8
1925	52.6	20.1	35.4	5.1	192.7	61	3.2	3.3	5.5
1926	55.1	19.6	37.4	5.6	197.8	64	3.3	3.3	7
1927	56.2	19.8	37.9	4.2	203.4	64.4	3.6	4	6.7
1928	57.3	21.1	39.2	3	207.6	64.5	3.7	4.2	4.2
1929	57.8	21.7	41.3	5.1	210.6	67	4	4.1	4
1930	55	15.6	37.9	1	215.7	61.2	4.2	5.2	7.7
1931	50.9	11.4	34.5	-3.4	216.7	53.4	4.8	5.9	7.5
1932	45.6	7	29	-6.2	213.3	44.3	5.3	4.9	8.3
1933	46.5	11.2	28.5	-5.1	207.1	45.1	5.6	3.7	5.4
1934	48.7	12.3	30.6	-3	202	49.7	6	4	6.8
1935	51.3	14	33.2	-1.3	199	54.4	6.1	4.4	7.2
1936	57.7	17.6	36.8	2.1	197.7	62.7	7.4	2.9	8.3
1937	58.7	17.3	41	2	199.8	65	6.7	4.3	6.7
1938	57.5	15.3	38.2	-1.9	201.8	60.9	7.7	5.3	7.4
1939	61.6	19	41.6	1.3	199.9	69.5	7.8	6.6	8.9
1940	65	21.1	45	3.3	201.2	75.7	8	7.4	9.6
1941	69.7	23.5	53.3	4.9	204.5	88.4	8.5	13.8	11.6

Source: R Core Team (2020)

3.2 Theoretical Framework

There are some basic assumptions to be adhered to before making use of partial correlation. Some of these basic assumptions include linearity, normality, and outliers. The theoretical backgrounds for authenticating these assumptions are extensively discussed hereunder.

3.2.1 Linearity

There is need to check that variables are linearly related. This could be checked by plotting scatter diagrams. We consider the first variable as the baseline and obtain the graphical representation of the baseline variable with others. These visualizations are achieved with the help of R programming software (R Core Team, 2020).

3.2.2 Normality

Before obtaining partial correlation coefficients, it is expected that variables should be approximately normally distributed. This is achieved using Shapiro-Wilk test of normality, which is embedded in R .

3.2.3 Outlier

Recall that partial correlation is sensitive to outliers, which can have a very wide effect on the line of best fit and the correlation coefficient, thereby leading to incorrect conclusions regarding the data. It is expected that datasets should not contain significant outlier before choosing partial correlation technique for measuring the degree of association between two variables when the
influence(s) of other variable(s) are held constant. Outliers are simply single data points within our datasets that do not follow the usual pattern. If the appearance of outliers is significant, it is advisable to drop the use of partial correlation technique to avoid misleading inferences. In this study, we apply box plot to check the tolerance of outlying effects on our datasets.

3.3 Estimation Procedures

This paper studies four different methods of computing the coefficients of partial correlation as earlier said. Each of the four methods is discussed with practical illustrations. The first, second and third order partial correlation coefficients, represented by $\ell_{12 \mid 3^{3}}, \ell_{12 \mid 36}$, and ${ }^{\ell}{ }_{12 \mid 367}$, could be computed through conventional approach, variance-covariance matrix method, regression residual's approach, and ordinary least square method.

In this paper, we represent consumption by x_{1}, corporate profit by x_{2}, private wage bill by x_{3}, gross national product by x_{6}, and government wage bill by x_{7} . Therefore, for instance, the symbol $\ell_{12 \mid 3}$ means first order partial correlation coefficient between consumption and corporate profit holding the influence of private wage bill constant.

However, the theoretical procedures for each of the methods are extensively discussed with the inclusion of some R codes to serve as calculator, to avoid computational errors and to reduce computational stress.

3.3.1 Computational Procedures of Conventional Approach

We discuss some of the existing formula for computing partial correlation coefficients using conventional approach. The first order partial correlation coefficient is computed by:

$$
\begin{equation*}
\ell_{12 \mid 3}=\frac{r_{12}-r_{13} \cdot r_{23}}{\sqrt{\left(1-r_{13}^{2}\right)\left(1-r_{23}^{2}\right)}} \tag{6}
\end{equation*}
$$

for

$$
\begin{align*}
& r_{12}=\frac{n \Sigma x_{1} x_{2}-\Sigma x_{1} \cdot \sum x_{2}}{\sqrt{\left.n \sum x_{1}^{2}-\left(\sum x_{1}\right)^{2}\right]\left[n \sum x_{2}^{2}-\left(\sum x_{2}\right)^{2}\right]}} \tag{7}\\
& r_{13}=\frac{n \sum x_{1} x_{3}-\sum x_{1} \cdot \sum x_{3}}{\sqrt{\left[n \sum x_{1}^{2}-\left(\sum x_{1}\right)^{2}\right]\left[n \sum x_{3}^{2}-\left(\sum x_{3}\right)^{2}\right]}} \tag{8}\\
& r_{23}=\frac{n \sum x_{2} x_{3}-\sum x_{2} \cdot \sum x_{3}}{\sqrt{\left[n \sum x_{2}^{2}-\left(\sum x_{2}\right)^{2}\right]\left[n \sum x_{3}^{2}-\left(\sum x_{3}\right)^{2}\right]}} \tag{9}
\end{align*}
$$

$$
\begin{align*}
& S_{11}=\frac{1}{n-1}\left[\Sigma x_{1}^{2}-\left(\Sigma x_{1}\right)^{2} / n\right](14) \\
& S_{22}=\frac{1}{n-1}\left[\Sigma x_{2}^{2}-\left(\Sigma x_{2}\right)^{2} / n\right](15) \\
& S_{33}=\frac{1}{n-1}\left[\Sigma x_{3}^{2}-\left(\Sigma x_{3}\right)^{2} / n\right](16) \tag{16}\\
& S_{12}=S_{21}=\frac{1}{n-1}\left[\Sigma x_{1} x_{2}-\left(\Sigma x_{1}\right)\left(\Sigma x_{2}\right) / n\right](17) \\
& S_{13}=S_{31}=\frac{1}{n-1}\left[\Sigma x_{1} x_{3}-\left(\Sigma x_{1}\right)\left(\Sigma x_{3}\right) / n\right](18) \tag{18}\\
& S_{23}=S_{32}=\frac{1}{n-1}\left[\Sigma x_{2} x_{3}-\left(\Sigma x_{2}\right)\left(\Sigma x_{3}\right) / n\right](19)
\end{align*}
$$

Under the variance-covariance matrix approach, the first order partial correlation coefficient is computed by:

$$
\begin{equation*}
\ell_{12 \mid 3}=\frac{S_{12.3}}{\sqrt{\left(S_{11.3}\right)\left(S_{22.3}\right)}} \tag{20}
\end{equation*}
$$

for

$$
\begin{align*}
& S_{12.3}=S_{12}-S_{13} \cdot S_{33}^{-1} \cdot S_{23} \tag{21}\\
& S_{11.3}=S_{11}-S_{13} \cdot S_{33}^{-1} \cdot S_{13} \tag{22}\\
& S_{22.3}=S_{22}-S_{23} \cdot S_{33}^{-1} \cdot S_{23} \tag{23}
\end{align*}
$$

It should be noted that this method could only handle first order partial correlation coefficient. Based on our knowledge, no further formula has been devised yet to handle more than first order partial correlation.

3.3.3 Computational Procedures of Regression Residual's Approach

The coefficients of partial correlation of any order can be numerically obtained by the regression residual's method. This approach is efficient in terms of applicability and even in terms of time. It is very easy to understand even by the non-statisticians. Given our datasets, we are expected to compute three different partial correlation coefficients. However, this method can handle all the computational situations as far as partial correlation is concerned. Each of the procedures is tailored as follows:

3.3.3.1 First Order

In an attempt to compute the first order partial correlation coefficient between consumption and corporate profit holding the influence of private wage bill constant, the following steps are necessary:

Step I: Regress x_{1} on x_{3} and obtain the residual of the model $\left(e_{1}\right)$

Step II: Regress x_{2} on x_{3} again and obtain the residual of the model $\left(e_{2}\right)$

Step III: Thereafter, obtain the PPM between e_{1} and
e_{2} Result obtained as PPM becomes the first order partial correlation coefficient (ℓ_{1}) between consumption and corporate profit when the influence of private wage bill is held constant.

3.3.3.2 Second Order

On the other hand, to obtain the second order partial correlation coefficient between consumption and corporate profit holding the influences of private wage bill and gross national product constant, the steps are tailored as follows:

Step I: Regress x_{1} on x_{3} and x_{6} and obtain the residual of the model $\left(e_{1}\right)$

Step II: Regress x_{2} on x_{3} and x_{6} again and obtain the residual of the model $\left(e_{2}\right)^{3}$

Step III: Thereafter, obtain the PPM between e_{1} and e_{2} Kindly note that result obtained as PPM becomes the second order partial correlation coefficient (ℓ) between consumption and corporate profit wher 2 the influences of private wage bill and gross national product are removed.

3.3.3.3 Third Order

Also, to obtain the third order partial correlation coefficient between consumption and corporate profit holding the influences of private wage bill, gross national product and government wage bill constant, the following steps should be followed:

Step I: Regress x_{1} on x_{3}, x_{6} and x_{7} and obtain the residual of the model, denoted by ${ }^{6} e_{1}$

Step II: Regress x_{2} on x_{3}, x_{6} and x_{7} again and obtain the residual of the model denoted by e_{7}

Step III: Thereafter, compute the PPM between e_{1} and e_{2}.

Kindly note that result obtained as PPM becomes the third order partial correlation coefficient (ℓ
) between consumption and corporate profit when life influences of private wage bill, gross national product and government wage bill are removed.

3.3.4 Computational Procedures of OLS Approach

Besides regression residual's method, partial correlation coefficients could also be obtained from ordinary least square (OLS) approach. This method is also efficient in terms of application and time. Though involves little computational stress if done manually, its numerous advantages cannot be quantified. With the aid of the sophisticated programming software like R, the stress involved would be weightless. This approach handles all orders of partial correlation coefficients, be it first, second, third or more. Here, interest centers on obtaining the estimates of OLS of the first variable on others. However, the computational procedures, for instance, the first order partial correlation, ℓ, are tailored below:

Step I: Obtain the ${ }^{3}$ OLS estimates of multiple linear regression model of x_{1} on x_{2} and x_{3}

Step II: Obtain the estimates of standard error with the corresponding T-test for each coefficient

Step III: Compute $\ell_{12 \mid 3}$ using the formula (24) given below
$\ell_{12 \mid 3}=\frac{T_{x_{2}}}{\sqrt{T_{x_{2}}^{2}+d f e}}$ (24)
for
$T_{x 2}=\frac{\hat{\beta}_{x_{2}}}{\operatorname{SE}\left(\hat{\beta}_{x_{2}}\right)}(25)$
where $d f e$ means degree of freedom for error, which is
computed as $d f e=n-p^{\text {(Note that }} p=$ number of all the variables in any particular model formed).

However, the same process will be repeated when we are to obtain the second and third partial correlation coefficients. Many of these calculations would be figured out by the use of R programming software version 4.0.3 (R Core Team, 2020).

3.4 The R Syntax

The commands written in R language (R Core Team, 2020) to accomplish all the statistical tasks are succinctly detailed in Table 3:

Table 3
The Breakdown of R Language

S/N	R commands	Uses	Remarks
1.	library(AER)	To recall the library AER before using it	
2.	data(KleinI)	To figure the dataset into R environment	
3.	View(KleinI)	To view the dataset	
4.	head(KleinI)	To see only the first 6 elements of the data	
5.	$x_{1}=\mathrm{KleinI}[, 1]$	To extract the variable labeled x_{1}	
6.	$x_{2}=$ KleinI[, 2]	To extract the variable labeled x_{2}	
7.	$x_{3}=$ KleinI[, 3]	To extract the variable labeled x_{3}	
8.	$x_{6}=$ KleinI[, 6]	To extract the variable labeled x_{6}	
9.	$x_{7}=$ KleinI[, 7]	To extract the variable labeled x_{7}	
10.	mydata $=$ data.frame $\left(x_{1}, x_{2}, x_{3}, x_{6}, x_{7}\right)$	To combine all the variables	
11.	$\operatorname{cor}\left(x_{1}, x_{2}\right.$, method $=$ 'pearson' $)$	PPM between x_{1} and x_{2}	0.7243439
12.	$\operatorname{cor}\left(x_{1}, x_{3}\right.$, method $=$ 'pearson')	PPM between x_{1} and x_{3}	0.9664623
13	$\operatorname{cor}\left(x_{1}, x_{6}\right.$, method $=$ 'pearson')	PPM between x_{1} and x_{6}	0.9604946
14.	$\operatorname{cor}\left(x_{2}, x_{3}\right.$, method $=$ 'pearson' $)$	PPM between x_{2} and x_{3}	0.7626755
15.	$\operatorname{cor}\left(x_{2}, x_{6}\right.$, method $=$ 'pearson' $)$	PPM between x_{2} and x_{6}	0.8409359
16.	$\operatorname{cor}\left(x_{3}, x_{6}, \text { method }=\text { 'pearson' }\right)$	PPM between x_{3} and x_{6}	0.9815224
17.	library(ggm)	To recall the library ggn before using it	
18.		To obtain $\ell_{12 \mid 3}$	-0.0767811
19.	$\operatorname{pcor}\left(c\left(" x_{1}\right.\right.$ ", " $\left.x_{2} ",{ }^{\prime} x_{3}{ }^{\prime}, " x_{6}{ }^{\prime \prime}\right), \operatorname{var(mydata))}$	To obtain $\ell_{12 \mid 36}$	-0.3984185
20.		To obtain $\ell_{12 \mid 367}$	0.1861561

Source: Authors' computation (2021)

4. RESULTS AND DISCUSSION

4.1 Confirmation of Assumptions

We examine the datasets by checking the validity of all the basic assumptions of partial correlation before
obtaining any order of the coefficient. This examination of each assumption is detailed as follows:

4.1.1 Checking Linearity Assumption

The following visualizations (Figures I-IV) explain the linearity and or otherwise of our datasets.

Figure 1
Testing for Linearity between Consumption and Corporate Profit

Figure 3
Testing for Linearity between Consumption and Gross National Product

Critical examination of the four infographics (Figures I-IV) shows that linearity assumption is not violated since almost all the data points fall within the eclipse. We therefore conclude that this assumption is upheld.

Figure 2
Testing for Linearity between Consumption and Private Wage Bill

Figure 4
Testing for Linearity between Consumption and Government Wage Bill

4.1.2 Ascertaining Normality Assumption

The following results in Table 4 show the evidences of upholding normality assumption as reported by the use of Shapiro-Wilk statistical test.

Table 4
Reports of Normality Test

S/N	Variable	Shapiro-wilk statistic (W)	P-value	Remarks
1.	Consumption	0.98453	0.9713	No violation of normality assumption
2.	Corporate Profit	0.95829	0.4555	No violation of normality assumption
3.	Private Wage Bill	0.95412	0.3802	No violation of normality assumption
4.	Gross National Product	0.98820	0.1817	No violation of normality assumption
5.	Government Wage Bill	0.91626	0.0636	No violation of normality assumption

[^2]
4.1.3 Checking Existence of Outliers

The third assumption is to check if outlying effect is significant in the datasets used. This could be achieved by employing the use of box plot. Report of this is presented in Figure V.

Figure V: Testing for Outliers' Effect on the Datasets
Figure 5
Testing for outliers' effect on the datasets
Careful study of the Figure V shows that the two outliers surveyed could be still be accommodated since they are scattered evenly between private wage bill and gross national product. Therefore, the outliers are said to be tolerable and the analysis by partial correlation is still perfectly okay for the datasets.

4.2 Computation of $1^{\text {st }}$ Order Partial Correlation Coefficient

We compute the first order partial correlation coefficient by each of the four methods theoretically discussed in our earlier section. All the methods discussed in this study can handle the first order.

4.2.1 Computation by Conventional Approach

The following statistics are obtained from our datasets with R syntax:

$$
\begin{array}{ccc}
\Sigma x_{1}=1173.700 & \Sigma x_{2}=367.4000 & \Sigma x_{3}=792.4000 \\
\Sigma x_{1}^{2}=63750.67 & \Sigma x_{2}^{2}=6508.540 & \Sigma x_{3}^{2}=29390.30 \\
\Sigma x_{1} x_{2}=20071.81 & \Sigma x_{1} x_{3}=43223.02 & \Sigma x_{2} x_{3}=13662.37
\end{array}
$$

The matrix of PPM correlation coefficients for x_{1}, x_{2} and x_{3} is obtained as follows:

Table 5
Report of Linear Regression Model of x_{1} on x_{3}

Parameters	Estimates	Standard Error	T-value	P-value
Intercept	13.1348	2.42476	5.417	0.00003
Coefficient of x_{3}	1.1165	0.06634	16.830	0.00000

[^3]Table 6
Report of Linear Regression Model of x_{2} on x_{3}

Parameters	Estimates	Standard Error	T-value	P-value
Intercept	-1.1502	3.50255	-0.4290	0.67300
Coefficient of x_{3}	0.5054	0.09583	5.273	0.00000

Multiple R-squared $=0.5817$; Multiple R-squared $($ Adjusted $)=0.5608 ;$ F-statistic $=27.81$, Overall P-value $=0.00000$
The model is $x_{2}=-1.5017+0.5054 x_{3}$
Source: Authors' computation (2021)
Table 7
Report of Errors for Linear Regression Models

S/N	Residual. 1	Residual. 2	Product Moment Correlation (PPM) of the Residuals
1.	-5.4907	-0.3523	
2.	0.29382	1.01535	
3.	-0.8490	3.59502	
4.	-2.0083	2.66935	
5.	-0.3850	3.77042	
6.	-0.0598	3.71240	
7.	0.20716	2.20170	
8.	0.74890	2.14903	$e_{1} e_{2}-\Sigma e_{1} \cdot \Sigma e_{2}$
9.	0.39742	2.79207	$e_{7}=\frac{\pi L \varepsilon_{1} \varepsilon_{2}-2 \varepsilon_{1} \cdot 2 \varepsilon_{2}}{\pi}$
10.	-1.4473	2.33084	${ }^{2} / \sqrt{\left.\left.n \Sigma e_{1}^{2}-\left(\Sigma e_{1}\right)^{2}\right] n \Sigma e_{2}^{2}-\left(\Sigma e_{2}\right)^{2}\right]}$
11.	-0.4511	-2.05097	
12.	-0.7549	-4.53279	
13.	0.08598	-6.15337	$r=-007678112 \simeq-008 \equiv-8^{\circ}$
14.	1.54424	-1.70070	$r_{e_{1} e_{2}}=-0.07678112=-0.08=$
15.	1.39954	-1.66193	
16.	1.09657	-1.27584	
17.	3.47708	0.504909	
18.	-0.2123	-1.91756	
19.	1.71395	-2.50258	
20.	2.01776	-0.52076	
21.	1.62157	-0.13895	
22.	-2.9456	-1.93334	

Source: Authors' computation (2021)

4.2.4 Computation by OLS Approach

The parameter estimation of multiple linear regression model of x_{1} on x_{2} and x_{3} is obtained via the use of R syntax as follows:
Table 8
Report of Multiple Linear Regression Model of x_{1} on x_{2} and x_{3}

Parameters	Estimates	Standard Error	T-value	P-value
Intercept	13.05497	2.49178	5.2390	0.00000
Coefficient of x_{2}	-0.0532	0.15835	-0.336	0.74100
Coefficient of x_{3}	1.14339	0.10492	10.8970	0.00000

Multiple R-squared $=0.9344 ;$ Multiple R-squared (Adjusted) $=0.9275 ;$ F-statistic $=135.4$, Overall P-value $=0.00000$
The model is $x_{1}=13.05497-0.0532 x_{2}+1.14339 x_{3}$
Source: Authors' computation (2021)
Therefore, we compute the first order partial correlation as follows:

$$
\ell_{12 \mid 3}=\frac{T_{x_{2}}}{\sqrt{T_{x_{2}}^{2}+d f e}}=-\frac{0.336}{\sqrt{(-0.336)^{2}+19}}=-0.07685569 \cong-0.08 \equiv-8 \%
$$

4.3 Computation of 2nd Order Partial Correlation Coefficient

Here, we obtain the second order partial correlation
coefficient by all the methods except that of variancecovariance approach. Each of the remaining methods is tailored as follows:

4.3.1 Computation by Conventional Approach

The matrix of PPM correlation coefficients for x_{1}, x_{2}, $x_{3}{ }^{\text {and }} x_{6}$ is obtained as follows:

$$
R=\left(\begin{array}{cccc}
1 & 0.7243 & 0.9665 & 0.9605 \\
& 1 & 0.7627 & 0.8409 \\
& & 1 & 0.9815 \\
& & & 1
\end{array}\right)
$$

Therefore, the second order partial correlation coefficient is obtained as follows:
$\ell_{12 \mid 36}=\frac{\ell_{123}-\ell_{163} \cdot \ell_{26 / 3}}{\sqrt{\left(1-\ell_{16 \mid 3}^{2}\right)\left(1-\ell_{26 \mid 3}^{2}\right)}}=-0.3984185 \cong-0.40 \equiv-40 \%$

4.3.2 Computation by Regression Residual's Approach

Let's represent the first and second regression models by "regression.11" and "regression. 22 " while their residuals could be named "residual.11" and "residual.22" within R environment. Therefore, the codes are:
regression. $11=\operatorname{lm}\left(x_{1} \sim x_{3}+x_{6}\right)$; summary(regression.11)
regression. $22=\operatorname{lm}\left(x_{2} \sim x_{3}+x_{6}\right) ;$ summary(regression. 22)
residual.11=resid(regression.11); write.csv(residual.11, "RES.11.csv") residual.22=resid(regression.22); write.csv(residual.22, "RES.22.csv") cor (residual.11, residual. 22 , method="pearson")

The results for these codes are reported in Tables 9-11.

Table 9
Report of Multiple Linear Regression Model of x_{1} on x_{3}, and x_{6}

Parameters	Estimates	Standard error	T-value	P-value
Intercept	13.3460	2.4216	5.511000	0.00000
Coefficient of x_{3}	0.74830	0.3451	2.168000	0.04310
Coefficient of x_{6}	0.21980	0.2023	1.087000	0.29060

Multiple R-squared $=0.9397$; Multiple R-squared $($ Adjusted $)=$
0.9314 ; F-statistic $=143.5$, Overall P -value $=0.00000$

The model is $x_{1}=13.3460+0.74830 x_{3}+0.21980 x_{6}$
Source: Authors' computation (2021)
Table 10
Report of Multiple Linear Regression Model of x_{2} on x_{3}, and x_{6}

Parameters	Estimates	Standard error	T-value	P-value
Intercept	-0.5609	2.39990	-0.2340	0.81778
Coefficient of x_{3}	-1.1351	0.34200	-3.3180	0.00361
Coefficient of x_{6}	0.9794	0.2004	4.88600	0.00010

Multiple R-squared $=0.8146$; Multiple R-squared $($ Adjusted $)=$ 0.7951 ; F-statistic $=41.75$, Overall P-value $=0.00000$

The model is $x_{2}=-0.5609-1.1351 x_{3}+0.9794 x_{6}$
Source: Authors' computation (2021)

Table 11
Report of Errors for the two Multiple Linear Regression Models

S/N	Residual. 1	Residual. 2	Product moment correlation (PPM) of the residuals	
1.	-4.96791	1.976717		
2.	-0.55245	-2.7546		
3.	-1.28527	1.651462		
4.	-2.23798	1.646201		
5.	-0.66633	2.517124		
6.	-0.64618	1.100142		
7.	-0.3023	-0.06786	$\cdots{ }^{\text {a }}$	
8.	0.335618	0.307926	$r_{e_{1} e_{2}}=\sqrt{\\| n \Gamma a^{2}-(\Gamma a)^{2} \mid}\left\|n \Gamma a^{2}-(\Gamma a)^{2}\right\|$	
9.	0.440859	2.985585	$\sqrt{\left.n \sum e_{1}^{2}-\left(\Sigma e_{1}\right)^{2}\right]\left[n \Sigma e_{2}^{2}-\left(\sum e_{2}\right)^{2}\right]}$	
10.	-1.18017	3.520785		
11.	-0.16086	-0.75805		
12.	-0.00186	-1.17811	$\cdot r=-03984185 \sim-0.40=-40 \%$	
13.	0.814345	-2.90864	$\cdots e_{1} e_{2}=-0.3984185=-0.40=-40$	
14.	1.91261	-0.05968		
15.	1.5299	-1.08119		
16.	1.151061	-1.03309		
17.	3.032478	-1.4757		
18.	0.384017	0.739029		
19.	2.180604	-0.42371		
20.	1.845723	-1.28715		
21.	1.338481	-1.40007		
22.	-2.96439	-2.01712		

Source: Authors' computation (2021)

4.3.3 Computation by OLS Approach

The parameter estimation of multiple linear regression
model of x_{1} on x_{2} and x_{3} is obtained via the use of R syntax as follows:

Table 12
Report of Multiple Linear Regression Model of x_{1} on x_{2}, x_{3} and x_{6}

Parameters	Estimates	Standard error	T-value	P-value
Intercept	13.1205	2.2853	5.7410	0.00000
Coefficient of x_{2}	-0.4020	0.2181	-1.843	0.08190
Coefficient of x_{3}	0.29200	0.4088	0.7140	0.48420
Coefficient of x_{6}	0.61360	0.2863	2.1430	0.04600

Multiple R-squared $=0.9478$; Multiple R-squared (Adjusted) $=$ 0.9391 ; F-statistic $=108.9$, Overall P-value $=0.00000$

The model is
$x_{1}=13.1205-0.4020 x_{2}+0.2920 x_{3}+0.6136 x_{6}$
Source: Authors' computation (2021)

Therefore, we compute the first order partial correlation as follows:

$$
\ell_{1236}=\frac{T_{x_{2}}}{\sqrt{T_{x_{2}}^{2}+d f e}}=-\frac{1.843}{\sqrt{(-1.843)^{2}+18}}=-0.398430387 \cong-0.40 \equiv-40 \%
$$

4.4 Computation of $3^{\text {rd }}$ Order Partial Correlation Coefficient

In handling the computation of third order partial correlation coefficient, only two methods: regression residual's approach and OLS method. The remaining two methods could not survive in this scenario. Results of the practical illustrations are presented as follows:

4.4.1 Regression Residual's Approach

Let's the first and second regression models be denoted by "regression.111" and "regression. 222 " while their residuals could be labeled as "residual.111" and "residual. 222 " while using R engine. The codes are:
regression. $111=\operatorname{lm}\left(x_{1} \sim x_{3}+x_{6}+x_{7}\right) ;$ summary $($ regression.111 $)$
regression. $222=\operatorname{lm}\left(x_{2} \sim x_{3}+x_{6}+x_{7}\right)$; summary(regression. 222)
residual.111=resid(regression.111); write.csv(residual.111, "RES.111.csv") residual. $222=$ resid(regression. 222); write.csv(residual.222, "RES.222.csv")
cor(residual.111, residual. 222, method="pearson")
Table 13
Report of Multiple Linear Regression Model of x_{1} on x_{3}, x_{6} and x_{7}

| Parameters | Estimates | Standard error | T-value | P-value |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Intercept | 14.9006 | 1.7872 | 8.337000 | 0.00000 |
| Coefficient of \boldsymbol{x}_{3} | 0.26830 | 0.2734 | 0.981000 | 0.33943 |
| Coefficient of \boldsymbol{x}_{6} | 0.41480 | 1.1531 | 2.710000 | 0.01436 |
| Coefficient of \boldsymbol{x}_{7} | 0.83480 | 0.1947 | 4.287000 | 0.00044 |

Multiple R-squared $=0.9693$; Multiple R-squared $($ Adjusted $)=$ $0.9642 ;$ F-statistic $=189.3$, Overall P -value $=0.00000$ The model is
$x_{1}=14.9006+0.26830 x_{3}+0.41480 x_{6}+0.83480 x_{7}$
Source: Authors' computation (2021)
Table 14
Report of Multiple Linear Regression Model of x_{2} on x_{3}, x_{6} and x_{7}

Parameters	Estimates	Standard error	T-value	P-value
Intercept	-2.0636	1.8147	-1.1370	0.2704
Coefficient of x_{3}	-0.6711	0.2776	-2.4180	0.0265
Coefficient of x_{6}	0.79100	0.1554	5.08900	0.0000
Coefficient of x_{7}	-0.8070	0.1977	-4.0820	0.0007
Multiple R-squared $=0.9037$; Multiple R-squared (Adjusted) $=$				
0.8877; F-statistic $=56.32, ~ O v e r a l l ~ P-v a l u e ~$$=0.00000$				
The model is				
$X_{1}=-2.0636-0.6711 x_{3}+0.7910 x_{6}-0.8070 x_{7}$				

Source: Authors' computation (2021)

Table 15
Report of Errors for the two Multiple Linear Regression Models

S/N	Residual. 1	Residual. 2	Product moment correlation (PPM) of the residuals	
1.	-3.2866	0.351488		
2.	-1.00893	-2.31335		
3.	-0.96182	1.338801		
4.	-0.9944	0.444106		
5.	0.333773	1.550375		
6.	0.230309	0.252891		
7.	0.865971	-1.19716	$=\frac{n \Sigma e_{1} e_{2}-\Sigma e_{1} \cdot \Sigma e_{2}}{}$	
8.	1.41548	-0.73592	$r_{e_{1} e_{2}}=\frac{\sqrt{n \Sigma a^{2}-(\rho a)^{2}} \\|_{n \Sigma \rho^{2}-(\rho \rho)^{2}}}{\|c\| c}$	
9.	2.041734	1.438107	$\sqrt{\left[n \Sigma e_{1}^{2}-\left(\Sigma e_{1}\right)^{2}\right]\left[n \Sigma e_{2}^{2}-\left(\Sigma e_{2}\right)^{2}\right]}$	
10.	0.690982	1.712046		
11.	1.041809	-1.92061		
12.	0.588221	-1.74852		
13.	0.120724	-2.23815	$\therefore r_{e_{1} e_{2}}=0.1861561 \cong 0.19 \equiv 19 \%$	
14.	0.572634	1.2356	$e_{1} e_{2}$	
15.	-0.03258	0.429174		
16.	-0.16297	0.237113		
17.	0.743464	0.736961		
18.	0.247026	0.87145		
19.	0.663957	1.04235		
20.	0.201385	0.302341		
21.	-0.04926	-0.05862		
22.	-3.26091	-1.73049		

[^4]
4.3.3 Computation by OLS Approach

The parameter estimation of multiple linear regression model of x_{1} on x_{2} and x_{3} is obtained via the use of R syntax as follows:

Table 12
Report of Multiple Linear Regression Model of x_{1} on x_{2}, x_{3}, x_{6} and x_{7}

Parameters	Estimates		Standard error	T-value	P-value
Intercept	15.2790	1.8707	8.1680	0.0000	
Coefficient of x_{2}	0.18330	0.2347	0.7810	0.4454	
Coefficient of x_{3}	0.39130	0.3181	1.2300	0.2354	
Coefficient of x_{6}	0.26970	0.2417	1.1160	0.2799	
Coefficient of x_{7}	0.98270	0.2732	3.5980	0.0022	

Multiple R-squared $=0.9703$; Multiple R-squared (Adjusted) $=$ 0.9634 ; F-statistic $=139.1$, Overall P -value $=0.00000$

The model is
$x_{1}=15.2790+0.1833 x_{2}+0.3913 x_{3}+0.2697 x_{6}+0.9827 x_{7}$
Source: Authors' computation (2021)
Therefore, we compute the first order partial correlation as follows:
$\ell_{121367}=\frac{T_{x_{2}}}{\sqrt{T_{x_{2}}^{2}+d f e}}=-\frac{0.781}{\sqrt{(0.781)^{2}+17}}=0.186110911 \cong 0.19 \equiv 19 \%$

5. CONCLUSION AND RECOMMENDATION

In our research, we have extensively discussed, with detailed illustrations, the computational techniques both manually and electronically to obtain the first, second, and third partial correlation coefficients. Our datasets are obtained from R engine. To the best of our knowledge, we have demonstrated the four different methods of computing partial correlations, and recommended the best in a number of scenarios.

When our interest is centered on computing first order partial correlation coefficient, all the four methods discussed can flow but the conventional method is recommended to be least time-consuming. But when we are interested in computing the second order, only three methods: conventional, regression residual's, and OLS methods can handle such with recommendation that OLS method is the best amongst all in terms of time and computational stress.

However, from our practical illustrations, conventional method drops out of the three that reach the second stage, keeping only two: regression residual's, and OLS methods, while interested in computing higher order partial correlation coefficients. Therefore, we recommend the use of regression residual's approach and OLS
method to obtain third and higher order partial correlation coefficients. Both methods are straight-forward, reliable, understandable, explicit, and detailed to account for any order of partial correlations.

REFERENCES

Akoglu, H. (2018). User's guide to correlation coefficients. Turkish Journal of Emergency Medicine, 18(3), 91-93.
Aloe, A.M. (2013). The synthesis of partial effect sizes. Journal of the Society for Social Work and Research, 4(4), 390-405.
Bishara, A.J., \& James B.H. (2017). Confidence intervals for correlations when data are not normal. Behavior Research Methods, 49(1), 294-309. Retrieved from https://doi. org/10.3758/s13428-016-0702-8.
Egozcue, J. J., Pawlowsky-Glahn, V., \& Gloor, G. B. (2018). Linear association in compositional data analysis. Austrian Journal of Statistics, 47 (1), Pp. 3-31.
Fieller, E. C., Herman, O. H., \& Egon, S. P. (1957). Tests for rank correlation coefficients I. Biometrika, 44(3/4), 470-81. Retrieved from https://doi.org/10.1093/ biomet/48.1-2.29.
Fisher, R.A. (1924). The distribution of the partial correlation coefficient. Metron, 3(3-4), 329-332.
Guilford, J.P., \& Fruchter, B. (1973). Fundamental statistics in psychology and education. McGraw-Hill, Kogakusha, Ltd.
Ha, M.J., \& Sun, W. (2014). Partial correlation matrix estimation using ridge penalty followed by threshold and re-estimation. Biometrics, 70(3), 762-770.
Hinkle, D. E., Wiersma, W., \& Jurs, S. G. (2018). Applied statistics for the behavioral sciences (8th ed.). Boston: Houghton Mifflin.
Horwitz, B., \& Rapoport, S. I. (1988). Partial correlation coefficients approximate the real intrasugject correlation pattern in the analysis of interregional relations of cerebral metabolic activity. Journal of Nuclear Medicine, 29(3), 392399.

Hotelling, H. (1936). Relations between two sets of variates. Biometrika, 28(3-4), 321-377. doi:10.1093/ biomet/28.3-4.321. JSTOR 2333955.
Kenett, D. Y., Huang, X., Vodenska, I., Havlin, S., \& Stanley, E. (2015). Partial correlation analysis: application for financial market. Journal of Quantitative Finance, 15(4), 569-578.
Kynčlová, P., Hron, K., \& Filzmoser, P. (2017). Correlation between compositional parts based on symmetric balances. Mathematical Geosciences, 49, 777-796.
Langfelder, P., \& Steve, H. (2012). Fast R functions for robust correlations and hierarchical clustering. Journal of Statistical Software, 46(11). Retrieved from https://www. jstatsoft.org/v46/i11/.
Lonas, E. (2020). Partial correlations in compositional data analysis. Applied Computing and Geosciences, 6, 100026.
Merrian-webster dictionary (2020). Definition of correlation. Available from https://www.merriam- webster.com/ dictionary/correlation. Downloaded on 10th January, 2020.

Mukaka, M. M. (2012). A guide to appropriate use of correlation coefficient in medical research. Malawi Medical Journal, 24(3), 69-71.
Pedhazur, E. J. (1982). Multiple regression in behavioural research: Explanation and prediction ($2^{\text {nd }}$ ed.). New York: Holt, Rinehart Winston.
R Core Team (2020). R: A language and environment for statistical computing Vienna, Austria: R foundation for statistical computing. Retrieved from https://www.R-project. org/.
Roverato, A., \& Castelo, R. (2017). The networked partial correlation and its application to the analysis of genetic
interactions. Journal of the Royal Statistical Society. Applied Statistics., Series C, 66(3), 647-665.
Serlin, R. C., \& Harwell, M. R. (2007). An empirical study of 8 tests of partial correlation coefficients. Communication in Statistics-Simulation and Computation, 22(2), 545-567.
Waliczec, T. M. (1996). A primer on partial correlation coefficients. A paper presented at the annual meeting of the Southwest Educational Research Association, New Orleans, January.
Yule, G. U. (1907). On the theory of correlation for any number of variables treated by a new system of notation. Roy. Soc. Proc. A. LXXIX, 182-193.

[^0]: ${ }^{[a]}$ Department of Statistics, University of Ilorin, Nigeria \& Head, Tim-R Programming Consult, Nigeria.
 ${ }^{[b]}$ Department of Biostatistics, Ogun State College of Heath Technology, Ilese-Ijebu, Nigeria.
 ${ }^{[c]}$ Department of Community Health and Primary Care, College of Medicine, University of Lagos, Nigeria.
 ${ }^{[d]}$ Department of Agricultural Economics, Ignatius Ajuru University of Education, Rumuolumeni, Port Harcourt, Nigeria.
 *Corresponding author.

[^1]: Ogunleye, T. A., Adesanya, K. K., Akinsola, Q. J., \& Wilcox, G. I. (2022). Cross-Sectional Analysis of Methods of Computing Partial Correlation Coefficients: A Self-Explained Note With R Syntax. Cross-Cultural Communication, 18(1), 18-31. Available from: http//www.cscanada.net/index.php/ccc/article/view/12498 DOI: http://dx.doi.org/10.3968/12498

[^2]: Source: Authors' computation (2021)

[^3]: Multiple R-squared $=0.934 ;$ Multiple R-squared $($ Adjusted $)=0.9308 ;$ F-statistic $=283.3$, Overall P-value $=0.00000$ The model is $x_{1}=13.1348+1.1165 x_{3}$

[^4]: Source: Authors' computation (2021)

