Linking Methane Seepage to Fluid Flow Mechanisms: Evidence from AVO Characteristics of Bottom Simulating Reflectors

Sanjeev Rajput, N. K. Thakur, P. Prasada Rao

Abstract


The presence of gas hydrates over continental margins may be inferred by various seismic indicators, including the bottom simulating reflector (BSR). Recently, the occurrence of two BSRs have been reported from many regions of the world. In this study we estimate the uncertainty in amplitude versus offset (AVO) behaviour of the single BSR and double bottom simulating reflector (DBSR) observed over two geological provinces; the Kerala-Konkan Basin, offshore India and Green Canyon, offshore USA, and attempt to infer a mechanism for the observed anomalies from the AVO patterns. Anomalous behaviour of seismic velocities within the gas hydrate stability zone (GHSZ) associated with the occurrence of DBSRs, low amplitude seismic chimneys and bright spots, indicates increased hydrate concentration and fluid venting structures underneath the DBSR locations. Such structures, if extended upward into the regional GHSZ through discrete fracture networks, may act as a passage for methane escape into the ocean. Our analysis indicates that the variability in AVO signatures for gas hydrate saturated sediments is potentially linked to the discrete zones of steeply inclined fractures that are responsible for the migration of deep gas and its escape through the seabed.

Key Words: Methane hydrate; Gas dynamics; Seismic reflections; Plumbing system; Amplitude versus offset (AVO); Bottom simulating reflector


Keywords


Methane hydrate; Gas dynamics; Seismic reflections; Plumbing system; Amplitude versus offset (AVO); Bottom simulating reflector

Full Text:

PDF

References


[1] Andreassen, K., Hogstead, K., & Berteussen, K. A. (1990). Gas Hydrate in the Southern Barents Sea, Indicated by a Shallow Anomaly. First Break, 8(6), 235-245.

[2] Bangs, N. L., Musgrave, R. J., & Tréhu, A. M. (2005). Upward Shifts in the South Hydrate Ridge Gas Hydrate Stability Zone Following Post-Glacial Warming Offshore Oregon. Journal of Geophysical Research, 110, B03102.

[3] Behura, J., & Tsvankin, I. (2009). Reflection Coefficients in Attenuative Anisotropic Media. Geophysics, 74(5), WB193-WB202.

[4] Buffett, B. A., & Zatsepina, O. Y. (1999). Metastability of Gas Hydrate. Geophysical Research Letters, 26, 2981–2984.

[5] Castagna, J. P., & Backus, M. M. (1993). Offset-Dependent Reflectivity: Theory and Practice of AVO Analysis. Tulsa, OK: Society of Exploration Geophysicists.

[6] Ecker, C., Dvorkin, J., & Nur, A. (1998). Sediments with Gas Hydrates: Internal Structure from Seismic AVO. Geophysics, 63, 1659–1669.

[7] Golmshtok, A. Y., & Soloviev, V. A. (2006). Some Remarks on the Thermal Nature of the Double BSR. Marine Geology, 229(3-4), 187-198.

[8] Gay, A., Lopez, M., Berndt, C., & Seranne, M. (2007). Geological Controls on Focused Fluid Flow Associated with Seafloor Seeps in the Lower Congo Basin. Marine Geology, 244(1-4), 68–92.

[9] Gorman, A. R., Holbrook, Hornbach, W. S., Hackwith, M. J., Lizarralde, K. L. D., & Pecher, I. (2002). Migration of Methane Gas Through the Hydrate Stability Zone in a Low-Flux Hydrate Province. Geology, 30(4), 327-330.

[10] Haacke, R. R., Hyndman, R. D., Park, K. P., Yoo, D. G., Stoian, I., & Schmidt, U. (2009). Migration and Venting of Deep Gases into the Ocean Through Hydrate-Choked Chimneys Offshore Korea. Geology 37(6), 531-534.

[11] Haacke, R. R., Westbrook, G. K., & Hyndman, R. D. (2007). Gas Hydrate, Fluid Flow and Free-Gas: Formation of the Bottom-Simulating Reflector. Earth and Planetary Science Letters, 261, 407–420.

[12] Haacke, R. R., Westbrook, G. K., & Riley, M. S. (2008). Controls on the Formation and Stability of Gas Hydrate-Related Bottom-Simulating Reflectors (BSRs): A Case Study from the West Svalbard Continental Slope. Journal of Geophysical Research, 113, B05104.

[13] Heggland, R. (1997). Detection of Gas Migration from a Deep Source by the Use of Exploration 3D Seismic Data, Marine Geology, 137, 41-47.

[14] Henriet, J. P., & Mienert, J. (Eds.). (1998). Gas Hydrates-Relevance to World Margin Stability and Climatic Change. Geological Society of London, Special Publication, 137, 338.

[15] Holbrook, W. S., Lizarralde, D., Pecher, I. A., Gorman, A. R., Hackwith, K. L., Hornbach, M., & Saffer, D. (2002). Escape of Methane Gas Through Sediment Waves in a Large Methane Hydrate Province. Geology, 30, 467-470.

[16] Hovland, M., Gallagher, J. W., Clennell, M. B., & Lekvam, K. (1997). Gas Hydrate and Free Gas Volumes in Marine Sediments: Example from the Niger Delta Front. Marine and Petroleum Geology, 14, 245-255.

[17] Hovland, M., & Svensen, H. (2006). Submarine Pingoes: Indicators of Shallow Gas Hydrates in a Pockmark at Nyegga, Norwegian Sea. Marine Geology, 228, 15-23.

[18] Hyndman, R. D., & Spence, G. D. (1992). A Seismic Study of Methane Hydrate Marine Bottom Simulating Reflectors. Journal of Geophysical Research, 97, 6683–6698.

[19] Hubbert, M. K., & Willis, D. G. W. (1957). Mechanics of Hydraulic Fracturing. Trans. Am. Inst. Min. Eng., 210, 153–168.

[20] Morley, C. K. (2003). Outcrop Examples of Mudstone Intrusions from the Jerudong Anticline, Brunei Darussalam and Inferences for Hydrocarbon Reservoirs. Geological Society of London, Special Publication, 216, 381–392.

[21] Musgrave, R. J., Bangs, N. L., Larrasoaña, J. C., Gracia, E., Hollamby, J.A., & Vega, M.E. (2006). Rise of the Base of the Gas Hydrate Zone Since the Last Glacial Recorded by Rock Magnetism. Geology, 34(2), 117-120.

[22] Nimblett, J., & Ruppel, C. (2003). Permeability Evolution During Formation of Gas Hydrates in Marine Sediments. Journal of Geophysical Research, 108, B9.

[23] Ostrander, W. J. (1984). Plane wave reflection coefficients for gas sands at non normal angles of incidence. Geophysics, 49, 1637-1648.

[24] Park, K. P. (2008). Gas hydrate exploration activities in Korea. [Motion picture]. Proceedings of the 6th International Conference on Gas Hydrates, Vancouver.

[25] Paull, C. K., Ussler, W., III, Borowski, W. S., & Spiess, F. N. (1995). Methane-Rich Plumes on the Carolina Continental Rise: Associations with Gas Hydrates. Geology, 23, 89-92.

[26] Pecher, I. A., Holbrook, W. A., Sen M. K., Lizarralde, D., Wood, W. T., Hutchinson, D. R., Dillon, W. P., Hoskins, H., & Stephen, R. A. (2003). Seismic Anisotropy in Gas-Hydrate and Gas Bearing Sediments on the Blake Ridge, from a Walk-Away Vertical Seismic Profile. Geophysical Research Letters, 30(14), 1733.

[27] Posevang, J., & Mienert, J. (1999). The Enigma of Double BSRs: Indicators for Changes in the Hydrate Stability Field. Geo Marine Letters, 19, 157–163.

[28] Rajput, S., Thakur, N. K., Rao, P. P., & Joshi, A. (2010). AVO Response for a Complex Double Bottom Simulating Reflectors Model. Current Science, 98 (10), 1354-1358.

[29] Rajput, S. (2009). Analysis of Ocean Bottom Seismometer Data for Gas Hydrate Studies and Subsurface Models (Doctoral dissertation). Kurukshetra University, Kurukshetra.

[30] Riedel, M., Collett, T. S., Malone, M. J., & the Expedition 311 Scientists. (2006). Cascadia Margin Gas Hydrates. Proc. IODP, 311.

[31] Rueger, A. (1996). Reflection Coefficients and Azimuthal AVO Analysis in Anisotropic Media (Doctoral dissertation). Colorado School of Mines, Golden.

[32] Santoso, D., Alfian, Alam, S., Sulistiyono, Hendrajaya, L. & Munadi, S. (1995). Estimation of Limestone Reservoir Porosity by Seismic Attribute and AVO Analysis. Exploration Geophysics, 26, 437-443.

[33] Sassen, R., & MacDonald, I. R. (1997). Hydrocarbons of Experimental and Natural Gas Hydrates: Gulf of Mexico Continental Slope. Organic Geochemistry, 26, 289–293.

[34] Shipley, T. H., Houston, M. H., Buffler, R. T., Shaub, F. J., McMillen, K. J., Ladd, J. W., & Worzel, J. L. (1979). Seismic Evidence for Widespread Possible Gas Hydrate Horizons on Continental Slopes and Rises. American Association of Petroleum Geologists Bulletin, 63, 2204–2213.

[35] Sloan, E. D. (1998). Clathrate Hydrates of Natural Gases. New York: Marcel Decker.

[36] Suess, E., Torres, M. E., Bohrmann, G., Collier, R. W., Greinert, J., Linke, P., Rehder, G., Trehu, A., Wallmann, K., Winckler, G., & Zuleger, E. (1999). Gas Hydrate Destabilization: Enhanced Dewatering, Benthic Material Turnover and Large Methane Plumes at the Cascadia Margin. Earth and Planetary Science Letters, 170, 1–15.

[37] Thakur, N. K., & Rajput, S. (2010). Exploration of Gas Hydrates Geophysical Techniques. New York: Springer Publications.

[38] Tingay, M. R. P., Hillis, R., Morley, C. K., Swarbrick, R. E., & Okpere, E. C. (2003). Pore Pressure/Stress Coupling in Brunei Darussalam-Implications for Shale Injection, in Subsurface Sediment Mobilization (Edited by P. Van Rensbergen et al.). Geological Society of London, Special. Publication, 216, 369 – 379.

[39] Tréhu, A. M., Lin, G., Maxwell, E., & Goldfinger, C. (1995). A Seismic Reflection Profile Across the Cascadia Subduction Zone Offshore Central Oregon: New Constraints on the Deep Crustal Structure and on the Distribution of Methane in the Accretionary Prism. Journal of Geophysical Research, 100(B8), 15,101-15,116.

[40] Trehu, A. M., Torres, M. E., Moore, G. F., Suess, E., & Bohrmann, G. (1999). Temporal and Spatial Evolution of a Gas Hydrate-Bearing Accretionary Ridge on the Oregon Continental Margin. Geology, 27, 939-942.

[41] Tsvankin, I. (2005). Seismic Signatures and Analysis of Reflection Data in Anisotropic Media. Netherlands: Elsevier Science.

[42] Wood, W. T., Gettrust, J. F., Chapman, N. R., Spence, G. D., & Hyndman, R. D. (2002). Decreased Stability of Methane Hydrates in Marine Sediments Owing to Phase-Boundary Roughness. Nature, 420, 656-660.

[43] Zhang, Z., Han, D., & Yao, Q. (2011). Quantitative Interpretation for Gas Hydrate Accumulation in the Eastern Green Canyon Area, Gulf of Mexico Using Seismic Inversion and Rock Physics Transform. Geophysics, 76(B139).

[44] Zoeppritz, K. (1919). Erdbebenwellen VIII B On the Reflection and Penetration of Seismic Waves Through Unstable Layers. Goettinger Nachrichten, 1, 66-84.

[45] Zuhlsdorff, L., & Spiess, V. (2004). Three-Dimensional Seismic Characterization of a Venting Site Reveals Compelling Indications of Natural Hydraulic Fracturing. Geology, 32(2), 101-104.




DOI: http://dx.doi.org/10.3968/j.aped.1925543820130501.972

Refbacks

  • There are currently no refbacks.


Copyright (c)




Share us to:   


Reminder

  • How to do online submission to another Journal?
  • If you have already registered in Journal A, then how can you submit another article to Journal B? It takes two steps to make it happen:

1. Register yourself in Journal B as an Author

  • Find the journal you want to submit to in CATEGORIES, click on “VIEW JOURNAL”, “Online Submissions”, “GO TO LOGIN” and “Edit My Profile”. Check “Author” on the “Edit Profile” page, then “Save”.

2. Submission

  • Go to “User Home”, and click on “Author” under the name of Journal B. You may start a New Submission by clicking on “CLICK HERE”.

We only use three mailboxes as follows to deal with issues about paper acceptance, payment and submission of electronic versions of our journals to databases:
caooc@hotmail.com; aped@cscanada.net; aped@cscanada.org

 Articles published in Advances in Petroleum Exploration and Development are licensed under Creative Commons Attribution 4.0 (CC-BY)

ADVANCES IN PETROLEUM EXPLORATION AND DEVELOPMENT Editorial Office

Address:1055 Rue Lucien-L'Allier, Unit #772, Montreal, QC H3G 3C4, Canada.

Telephone: 1-514-558 6138
Website: Http://www.cscanada.net
Http://www.cscanada.org
E-mail:office@cscanada.net;  office@cscanada.org

Copyright © 2010 Canadian Research & Development Centre of Sciences and Cultures