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Abstract
By using a finite volume method as a solver, a modified 
3-D 3-phase (water, oil, gas) black-oil model for modeling 
hydrocarbon (HC) secondary migration in the context 
of basin modeling is presented in this paper. The model 
predicts the quantity and distribution of HC accumulation 
in space and time. The black-oil model used in basin 
modeling is more complex and more difficult to model 
than that in reservoir simulations, as the model includes 
variable simulation ranges, very long simulation times, 
initial conditions, natural sources and sinks, and reservoir 
gridcells. In the proposed finite volume formulation, the 
gridding of variable 3-D geological volumes is performed 
using perpendicular bisection (PEBI) gridcells, which 
makes the discretization and subsequent implementation 
of 3-phase flow equations much easier than when using 
hexahedral or tetrahedral gridcells. The stability and 
convergence of the solutions have been improved by 
using finite volumes with PEBI gridcells and the fully 
implicit formulation. A detailed case study in the Kuqa 
Depression of the Tarim Basin in western China shows 
that the simulation results and predictions agree well with 
field evaluations.
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INTRODUCTION
The secondary migration of oil and gas, also called 
hydrocarbon (HC) migration and accumulation, is 
the most important and yet challenging task in basin 
modeling. Generally speaking, 1-D (z) basin modeling[e.

g. 1, 2, 3], which is applicable in less explored areas where 
there are a few wells drilled, cannot simulate secondary 
migration. 2-D (x-z) basin modeling[e.g. 4, 5, 6], applicable 
in moderately-explored areas where some wells have 
been drilled and seismic sections do exist, cannot provide 
the amount of HC accumulated, though it is useful for 
analyzing secondary migration, and it usually involves 
two-phase (oil-water) models. 3-D (x-y-z) basin modeling 
however can simulate secondary migration and is applied 
in relatively explored areas where more wells have been 
drilled and seismic coverage is more complete. These 
3-D models are mostly two-phase (usually oil-water but 
sometimes gas-water) models[e.g. 7, 8, 9, 10], and seldomly 
three-phase (oil-gas-water) models or even compositional 
models[e.g. 11, 12]. The solver used for the 3-D 3-phase black-
oil model for modeling HC secondary migration is the 
control-volume finite-element method described in detail 
by Hantschel et al. using hexahedral gridcells[11] and by 
Mello et al. using tetrahedral gridcells[12], but no detailed 
examples were given. This paper provides detailed 
examples of both the finite volume solver using multi-
angular prisms with perpendicular bisection (PEBI), and 
an example to demonstrate its application.
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In this paper, a modified 3-D 3-phase (water, oil, 
gas) black-oil model using the finite volume method for 
secondary migration is presented. The black-oil model 
commonly used in reservoir simulations has been modified 
and introduced into the basin modeling process as a 
simulator. It is well known that basin modeling is applied 
to petroleum exploration while reservoir simulation for 
petroleum production. Though the basic equations (for 
water, oil and gas) are essentially the same second order 
parabolic partial differential equations as used in reservoir 

simulations, they exhibit eight completely different 
characteristics (see Table 1). For example, in basin 
evolution, the natural driving forces are a result of various 
geological events and HC expulsion, whereas in reservoir 
simulations these driving forces are man-made. To ensure 
the validity of the simulation results and the stability and 
convergence of solutions, special processing procedures 
are needed with respect to the different conditions shown 
in Table 1. Therefore, the filtration environment and 
solutions of basin modeling are much more complicated 
and difficult to achieve than those of reservoir simulations.

Table 1
Different Characteristics between Basin Modeling and Reservoir Simulation

Characteristic                                                            Basin modeling                                                                Reservoir simulation

Simulation space (x, y, z)              Variable: increasing globally, decreasing or even lost locally                           Fixed
Simulation area (x, y)                                                       102–105 (km2)                                                                         1–103 (km2)
Simulation time                                                       Very long: 107–109 (years)                                                      Very short: 1–100 (years)
Simulation timestep                                                0.005–0.1 (million years)                                                       1–30 (days)
Driving forces                Natural forces caused by various geological events in basin evolution Man-made forces generated by well 
                                                                                                                                                                                  injection and production
Initial conditions                                                       Single-phase (water)                                                     Water, oil/gas
Sources                                                            Oil/gas expelled from source rocks                                                       Injection into wells
Sinks                                                                         Water lost at Earth’s surface                                                       Production from wells

1.  GRIDDING OF 3-D VARIABLE GEOLOGICAL 
VOLUME
During the evolution of a basin, the geometrical volume 
of the basin may increase significantly and globally due 
to subsidence and deposition; it may be also decrease 
slightly due to sedimentary compaction. Other factors 
that may affect the basin volume include hiatuses, 
undercompaction, erosion, faulting, fracturing, tectonic 
movements, and paleobathymetry. Hence in basin 
modeling the geological volume being studied varies 
with time, in contrast to the fixed volumes used for 
reservoir simulations. To quantitatively model a basin, the 
geological volume of a basin must be partitioned into a 
large number of small grid blocks, called gridcells.

Up to now, there are two types of gridcells widely used 
for basin partitions: hexahedrons as shown in Fig. 1(a), 
used mainly in finite difference methods; and tetrahedrons 
as shown in Fig. 1(b), used primarily in finite element 
methods. Multi-angular prisms with PEBI as shown in 
Fig. 1(c) will be used in the finite volume formulation 
below.

Figure 1
Three Types of Gridcells for Gridding of 3-D 
Geological Volumes. (a) Hexahedron; (b) Tetrahedron; 
(c) Multi-angular Prism with Perpendicular Bisection 
(PEBI)

The fundamental  ideas of  PEBI gridding are 
perpendicularity and bisection, that is, the line between 
arbitrary neighboring gridcell centers (e.g. the relation 
of C1 to C2, C3, C4 and C5 shown in Fig. 2) is bisected by 
their common surface. As shown in Fig. 2, the gridcell 
V1 centered at C1 has four neighboring gridcells, centered 
at C2, C3, C4 and C5, respectively. These gridcells are 
referred to as V2, V3, V4 and V5, respectively. By taking 
V1 and V2 as an example, the line C1-C2 between their 
centers C1 and C2 is perpendicular to their common 
surface S1-S2, and bisected by the surface such that M12 is 
the midpoint of C1-C2. The relations between V1 and V3, 
V4 and V5 are similar to those between V1 and V2. A major 
advantage of the perpendicularity and bisection method 
of PEBI gridcells is that it makes the discretization of the 
finite volume formulation much easier than when using 
hexahedral or tetrahedral gridcells.

Figure 2
Basic Characteristics of Perpendicular Bisection 
(PEBI) Gridding
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2.  A MODIFIED 3-D 3-PHASE BLACK-OIL 
MODEL
The primary migration of oil and gas, also called HC 
expulsion, is defined as the movement of generated HC 
from low porosity and low permeability source rock to its 
encounter with higher permeability beds. The secondary 
migration of oil and gas, also called HC migration and 
accumulation, is the series of oil/gas movements after 
primary migration through the higher porosity and higher 
permeability carrier beds. If a suitable reservoir structure 
is encountered within the range of secondary migration, 
an oil/gas accumulation may be formed[13]. Therefore, in 
basin modeling, the HC secondary migration model is 
run after the execution of geohistory, geothermal history, 
diagenetic history, HC generation history, and especially 
HC expulsion history models.

In order to develop an effective way of describing oil/
gas secondary migration, a modified 3-D 3-phase black-
oil model is now presented.

2.1  Three-Phase Flow Equations
As a starting point the following assumptions or 
approximations are made: 1) no phase transfers occur 
between the water and oil; 2) no phase transfers occur 
between the water and gas; and 3) a one-way phase 
transfer can occur between the gas and oil, that is, gas 
moves in and out of the oil, but the oil does not vaporize 
into the gas phase.

With the above assumptions, the following 3-phase 
flow partial differential equations (PDE) can be derived 
by combining the four basic equations of fluid movement 
(continuity equation, flow potential, Darcy’s law, and 
equations of state)[14]:
Water-phase PDE

•{aw( pw − ρwg z)}± Qw=∂(ØSw/Bw)/∂t ,                  (1)

Oil-phase PDE

•{a o( po − ρ og z)}± Qo=∂(ØSo/Bo)/∂t ,                  (2)

Gas-phase PDE

•{a g( p g− ρ gg z )}+ •{a oR s( p o− ρ og z )}±(Q g+ 
RsQo)=∂[Ø(Sg/Bg + RsSo/Bo)]/∂t .                                      (3)

These equations form the so-called black-oil model. Let 
l  express arbitrary phase, such that l=w (water), o (oil), 
or g (gas), respectively. In Eqs. (1)–(3),  is the gradient 
operator, al (units of m2 Pa-1s-1) is the tensor of al=kk rl/(μlBl) 
where k  is the absolute permeability tensor (directional 
absolute permeability) with units of m2, k rl is the relative 
permeability to phase l  (k rl∈[0,1]), μ l (units of Pa•s) is 
the viscosity of phase l , and Bl (with units of m3/m3) is 
the formation volume factor of phase l . In addition, pl 

(Pa) is the pressure in phase l , ρ l (kg/m3) is the density 
of phase l , and g is the gravitational acceleration (m/s2) 
and can be taken as 9.81. The burial depth z  (in meters) 
is the thickness of the overlying sediments, Ql (s -1) is the 
volumetric source/sink term for phase l , Ø (fraction) is 
the rock porosity, Sl (fraction) is the saturation of phase 
l , R s (units of m3/m3) is the gas solubility in oil, and t  
(in seconds) is the time. Since k rw and k rg are functions 
of S w and S g, respectively, they can be found from the 
relative permeability functions; k ro can be calculated from 
the improved Stone formula[14]. Since μ w, μ o and μ g are 
functions of pw, po and pg respectively, Bw,  Bo and Bg are 
functions of pw, po and pg, respectively, and Rs is a function 
of po, they can be derived from the PVT functions[14].

Mass conservation leads to the saturation-balance 
equation:

Sw + So + Sg=1.                                                    (4)

Capillary pressures can be expressed as

pcow=po − pw,                                                                     (5)

pcog=pg − po,                                                             (6)

where pcow (Pa) is the capillary pressure in the oil-water 
system, and pcog (Pa) is the capillary pressure in the oil-
gas system. Since p cow and p cog are functions of S w and 
S g, respectively, they can be found from the relative 
permeability functions[14].

When the initial and boundary conditions for a 
geological volume are given, the six unknowns (p w, p o, 
p g and S w, S o, S g) in the volume can be calculated by 
using the six equations (1)–(6). Therefore, the pressure 
and saturation histories of water, oil and gas are uniquely 
determined, and describe the basic states of oil/gas 
secondary migration in the volume.

In calculations for modeling HC secondary migration, 
the potentials of water, oil and gas (i.e. Φw, Φ o and Φ g with 
units of Pa, respectively) are often used, and are given by

Φl=pl − ρlgz  (l=w, o, g),                                                    (7)

and ρw=ρw0/Bw, ρo=(ρo0 + Rsρg0)/Bo, ρg=ρg0/Bg,                  (8)

where ρw0, ρ o0 and ρ g0 (kg/m3) are the densities of water, 
oil and gas at standard conditions, respectively. ρw0=997.1, 
ρ o0=807.8 and ρ g0=1.0365 are used in the case study 
below.

2.2  Initial Conditions
Initial conditions mainly refer to the initial values of 
the pressures and saturations of water, oil and gas in the 
geological volume before secondary migration starts. 
Usually initial conditions of S w=1, S o=0, S g=0 are used, 
while po=ρ ogz , pw and pg are determined by Eqs. (5) and 
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(6), respectively. Moreover, the simulator does not start 
to run until expelled oil or gas occurs (Qo≠0 or Qg≠0) in 
the basin, so as to save simulation time. It is obvious that 
the initial conditions are different from those in reservoir 
simulations.

2.3  Boundary Conditions
Letting ql (m

3/s) be the source/sink term for phase l  and 
V  (m3) be the volume of a PEBI gridcell, we find that 
ql=Ql•V. There exist three kinds of boundary conditions: 
1) closed boundary at basin boundaries other than the 
Earth’s surface, 2) inflow “boundaries” in the source 
rock formation where the oil and gas were expelled 
(these boundaries are treated as “source” + q o and + q g; 
in this case, the sign “±” in Eqs. (2) and (3) becomes 
“+”), and 3) outflow boundary at the Earth’s surface 
where water flowed out of the basin (this boundary is 
considered as “sink” − q w, and thus the sign “±” in Eq. 
(1) simply becomes “−”). Here the boundaries (2) and 
(3) are opposite to those used in reservoir simulations. 
Assuming that the total pore volume in a basin remains 
approximately constant over short time-intervals, then                 
                at the gridcells on the flow boundaries, where m 
is the number of inlets on the inflow boundaries, and n is 
the number of outlets on the outflow boundaries. Finally, 
q w can be approximated by                since a l  is almost 
constant at the Earth’s surface.

The Neumann conditions are applied to the closed 
boundaries:

∂Φl/∂n=0, ∂Sl/∂n=0, (l=w, o, g)                                (9)

where n  is the external unit normal vector of the 
boundaries.

2.4  Absolute Permeability
Let k be the absolute permeability (m2) in the absence of 
microfracturing/faulting, which can be estimated from 
porosity using the Kozeny-Carman formula[6, 15] or the 
porosity-power function[15, 16, 17, 18]. The Kozeny-Carman 
formula is chosen in the case study since it relies on the 
specific surface area of the solid matrix for each different 
rock type. Two special procedures for dealing with 
microfractures and faults are discussed below.

Let p f (Pa) be the fluid pressure, p od (Pa) be the 
total load of the overlying deposits, k s (m2) be the 
permeability of sandstone, and k f (m

2) be the permeability 
in the existence of microfracturing. If p f<Cf•p od where 
Cf∈[0.8,0.9], no microfracturing occurs so that k f=k ; if 
pf≥Cf•pod, microfracturing occurs so that k f=k + k s(1−Cfpod/
pf)

2 [19]. Cf=0.85 is used as a default value.
The permeability of fault zones can be calculated by 

specific modeling approaches[e.g. 20, 21, 22, 23, 24]. Permeability 
enhancements of nearly one order of magnitude (relative 
to the host rock) are observed for the fault-parallel 
component in some regions. Fault-normal permeability, 
by contrast, may be two orders of magnitude less than the 

o g w( + )
m n

q q q=∑ ∑

o g
1 ( + )

m
q q

n∑

host rock permeability[23].

2.5  Reservoir Gridcells
A reservoir body should consist of sufficient and qualified 
reservoir rocks. Generally speaking, reservoir rocks are 
classified into two major types, namely, clastic rocks 
and carbonate rocks, i.e. sandstone and limestone. It 
is necessary to determine whether each gridcell is a 
reservoir gridcell or not. The three categories used to 
determine if a gridcell is a reservoir gridcell are: 1) if 
the sandstone content of part of a gridcell is larger than 
a specified threshold (e.g. 50%), this gridcell can be 
defined as a potential oil/gas reservoir gridcell; 2) there 
is no such threshold for classifying reservoir limestone, 
instead limestone gridcells are selected as potential oil/gas 
reservoir gridcells on the basis of favorable sedimentary 
facies, diagenesis and structural fracturing; and 3) all 
other gridcells are classified as non-reservoir gridcells. In 
calculating the amount of oil/gas accumulated, the results 
can be divided into two classes: 1) oil/gas in reservoir 
gridcells, which classification represents true oil/gas 
accumulations; and 2) oil/gas in non-reservoir gridcells, 
which is characteristic of oil/gas lost along migration 
pathways. These classifications are again different from 
those used in reservoir simulations.

3.  FINITE VOLUME FORMULATION WITH 
PEBI GRIDDING

3.1  Finite Volume Equations
The 3-phase coupled flow equations (1)–(3) are partial 
differential equations which are too complicated to be 
solved analytically for geologically realistic models. Up 
to now, there are three major types of approximations to 
the equations: finite difference, finite element, and finite 
volume. The finite volume method, which is similar in 
many ways to the finite difference method, is very flexible 
in dealing with irregular geometries and various boundary 
conditions with various types of gridcells, and many 
studies have shown its advantages in the application of 
reservoir simulations[25, 26, 27, 28].

The finite volume formulation is derived from the 
integral median theorem and the Gauss divergence 
theorem:

                                                                                       (10)

where div denotes the divergence of a vector field u , v is 
an arbitrary finite volume, s is the surface of v, and n  is 
the external unit normal vector of the surface s.

Let vi (i=1, 2, …, I  where I  is the number of gridcells) 
be a gridcell generated by PEBI gridding, and sij (j=1, 2, 
…, Ji where Ji is the number of surfaces of vi) be a surface 
of vi (for example, Ji=7 in the specific sample illustrated 
in Fig. 1(c)). Using Eq. (7) and integrating over vi on both 

div( )d d
v s

v s= ⋅∫∫∫ ∫∫

u u n
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sides of Eqs. (1)–(3) respectively, the following integral 
equations are obtained:

                                                                                       (11)

                                                                                       (12)

                                                                                       
                                                                                     
                                                                                       (13)

where grad is the gradient of a vector field.
Applying the median theorem and discretizing the 

right-hand sides of Eqs. (11)–(13), we find

                                                                                 (14)

                                                                                 (15)

                                                                                 (16)

where t1 is the start time only when Qo≠0 or Qg≠0, tn is the 
n th time, tn+1 is the (n+1)th time, and Δt  (in seconds) is the 
n th timestep, and Δt=tn+1−tn. Vi (m

3) is the volume of the ith 
gridcell vi, which is the product of the top or bottom area 
and the height of the prism gridcell shown in Fig. 1(c).

From the volume integral principle, the second terms 
on the left-hand sides of Eqs. (11) and (12) as well as 
the third term on the left-hand side of Eq. (13) can be 
rewritten as

                                                                                 (17)

                                                                                 (18)

                                                                                 (19)

Applying the Gauss divergence theorem to the first 
terms on the left-hand sides of both Eqs. (11) and (12) as 
well as the first and second terms on the left-hand side of 
Eq. (13), we find

                                                                                 (20)

                                                                                 (21)

· nds =                                                                            (22)

where al,n is the projection of tensor al in the n  direction, 
and n  is the external unit normal vector of the surface sij of 
vi.

In order  to label  the neighborhood gridcel ls 
surrounding a given gridcell vi in a coherent way, N(i ,j ) 
is used to denote the neighbor gridcell corresponding 
the j th surface s ij  of vi . For example, for the gridcell 
i=1610 with 8 surfaces (thus J 1610=8), the neighboring 
gridcells are 1609, 1611, …, 10 and 3210, and therefore 
N(1610,1)=1609, N(1610,2)=1611, …, N(1610,7)=10 and 
N(1610,8)=3210.

From the median theorem,

                                                                                       (23)

where B (i ,j ) is the midpoint on the line linking the 
center of gridcell vi and the center of the neighboring 
gridcell vN(i,j), which is located on the intersecting surface 
sij between vi and vN(i ,j ); and Sij (m

2) is the area of the 
intersecting surface sij (see Fig. 2).

Since the line linking the centers of two adjacent 
gridcells is normal to the common surface sij of the two 
gridcells, and using ΔL  (in meters) to denote the length 
of this line (see Fig. 2) and using the discretization, the 
above equation can be written as

                                                                                       (24)

From Eq. (24), the multiple integrals in Eqs. (20)–(22) 
can be written as

                                                                                       (25)

                                                                                       (26)

From Eqs. (14)–(19) and (25)–(26), (11)–(13) can be 
discretized as
Discretized equation of water-phase

                                                                                   

                                                                                       (27)

Discretized equation of oil-phase

(28)

Discretized equation of gas-phase

(29)

In Eqs. (27)–(29), a l,n(B (i ,j )) is the projection of 
al(B(i ,j)) in the direction of normal n . Letting k n (m

2) be 
the projection of tensor k  in the direction of normal n , and 
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using al=kk rl/(μlBl),

al,n(B(i,j))= [knk rl/(μlBl)]|B(i,j)  (l=w, o, g)                          (30)

where k n can be expressed as

k n=k xk ykz(k y
2kz

2cos2α+k x
2kz

2cos2β+k x
2k y

2cos2γ)−0.5                (31)

where the rule of ellipsoid is used; α , β  and γ  (degrees) 
are the angles between n  and x , y  and z  (in meters) 
respectively; (cosα , cosβ , cosγ ) are the components of 
the unit vector n ; and k x, k y and kz (m

2) are the absolute 
permeabilities of k  in the direction of the x, y and z  axes, 
respectively, as determined by

k x=λ xk , k y=λ yk , kz=λzk ,                                                  (32)

where k is discussed in Subsection 3.4; the values of λ x, 
λ y and λ z depend on the heterogeneous nature of rock 
formations and their petrophysical properties, usually 
λ x≈1, λ y≈1, but λz can vary within the range of 0.01–1.

3.2  Fully Implicit Formulation
Though the IMPES (i.e. implicit pressure and explicit 
saturation) formulation is simple and easy for calculations, 
the IMPES formulation produces unrealistic results which 
are potentially caused by the use of incorrect saturations. 
In order to ensure stability and convergence, the full 
implicit scheme for the solution of the nonlinear equations 
(27)–(29) is used. The fully implicit formulation involves 
implicit pressure and implicit saturation, using the Newton 
iteration method with a superlinear convergence rate and 
a relatively sparse matrix. This is well-known in reservoir 
simulations[29], and required for basin modeling since its 
solution is much more accurate, as well as being much 
more complicated and difficult than the former (see Table 
1).

Now there are six unknowns: S w, S g and P o [which 
can be solved from Eqs. (27)–(29)], and S o, P w and P g 
[determined from Eqs. (4)–(6)]. Suppose modeling has 
reached the n th timestep. Letting xn and xn+1 be the vector 
(Sw, Sg, Po) at the n th and (n+1)th time, respectively, xn+1can 
be then obtained by solving from xn

(33)

where F  is the nonlinear vector in terms of the unknown 
vector xn+1. Rw, Ro and Rg are the residuals which are the 
difference between the right-hand sides and the left-hand 
sides of Eqs. (27)–(29), respectively. The basic steps of the 
Newton iteration are as follows: letting x  be the solution 
of Eq. (33) at the k th iteration and δx(k)=x(k+1)−x(k) be 
its correction, substituting δx(k)=x(k+1)−x(k) in Eq. (33) 

and then expanding it in Taylor series and neglecting high-
order terms,

J (k)δx(k)=−F(δx(k))                                                       (34)

where J (k) is the Jacobi matrix at the k th Newton iteration, 
that is

                                                                                       (35)

Using the Jacobian equation (35) on each gridcell of 
the 3-D geological volume, a matrix equation is obtained:

AX=B                                                                             (36)

where A  is the 3I ×3I  coefficient matrix, constructed 
with I2 submatrices and each submatrice is a 3×3 matrix. 
There exist I  diagonal sub-matrices,     non-diagonal 
nonzero sub-matrices and (I 2−I−     ) non-diagonal zero 
sub-matrices. X  is the 3I×1 unknown column matrix, 
consisting of 3I  unknowns (δS w1, δS g1, δp o1, δS w2, δS g2,  
δp o2, …, δS wI , δS gI , δp oI), and B  is the 3I ×1 constant 
column matrix, containing 3I residuals (Rw1, Ro1, Rg1, Rw2, 
Ro2, Rg2, …, RwI, RoI, RgI).

Equation (36) is a nonlinear equation with respect to 3I 
unknowns where A is a large, sparse and unsymmetrical 
matrix. This large sparse system can be efficiently solved 
by the orthogonal minimum residual (ORTHOMIN) 
algorithm[30] with an incomplete lower-upper (ILU) 
preconditioner for faster inner iteration convergence rates.

The solution of Eq. (36) is updated based on the 
following residual convergence criteria:

max{Rw1, Ro1, Rg1, Rw2, Ro2, Rg2, …, RwI, RoI, RgI}≤ε      (37)

at the k th Newton iteration where ε is a pre-specified 
tolerant error which is assigned to 10 in the case 
study below. If Eq. (37) is met, and the mass balances 
is satisfied, then the Newton iteration stops (i.e. the 
simulation on the n th timestep ends) and thus it can start 
on the (n+1)th timestep.

3.3  Determination of Parameters at B(i ,j )
In Eq. (36), the calculations require the values of some 
parameters at the point B(i,j). However, these values exist 
only at gridcell centers rather than at B(i ,j ). Generally 
speaking, a parameter value at B(i,j) can be taken as the 
arithmetic mean of the values at the gridcell center and its 
neighboring gridcell centers, which will be demonstrated 
by Eqs. (38) and (39) below as examples. But the absolute 
permeability value at B(i ,j ) is preferably given by the 
harmonic mean, as demonstrated below for Eq. (40). 
Moreover, experimental data suggest that the values of 
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k rw, k ro, k rg, k' rw, k' ro, k' rg, R s, R' s, p o, S w and S g should be 
determined by the upstream process shown for Eqs. (41)–
(43) as an example below[31].

μl|B(i,j) =  (μl|i + μl|n(i,j))/2 (l=w, o, g)                                   (38)

Bl|B(i,j) =  (Bl|i + Bl|n(i,j))/2  (l=w, o, g)                                 (39)

The values of k x, k y and kz in Eq. (32) at B(i, j) should 
be determined by

kc|B(i,j) = 2kc|i·kc|n(i,j)/(kc|i + kc|n(i,j)) (c=x, y, z)                     (40)

k rl|B(i,j) = ωk rl|i + (1−ω)k rl|n(i ,j) (l=w, o, g)                           (41)

RS|B(i,j) = ωRS|i + (1−ω)RS|n(i ,j), R'S|B(i,j) = ωR'S|i + (1−ω)R'S|n(i ,j)    
                                                                                       (42)

where

(43)

and ω in Eq. (42) is determined only by Φ o.

3.4  Special Procedure for Initialization
When Eq. (36) is solved at t n , the data in the 3-D 
geological volume at tn are known. The next step is to 
solve Eq. (36) at tn+1, but initial data in the volume at tn+1 
are unknown since the volumes are different at tn and tn+1. 
Here is how to initialize the data in the volume at tn+1: 1) 
for the added new gridcells due to basin evolution from 
tn to tn+1, Sl and pl can be given by the initial conditions 
mentioned above; and 2) for other gridcells, the values 
of Sl and po are taken as the same values as those at the 
nearest gridcell in the same formation in the volume at tn, 
but po should be increased by ρ og(z 2−z 1) where z 1 and z 2 
are the burial depths at the corresponding gridcells in the 
volumes at tn and tn+1, respectively.

4.  CASE STUDY: THE KUQA DEPRESSION

4.1  Petroleum-Geological Setting
Located to the north of the Tarim Basin in western China, 
the Kuqa Depression covers about 40,000 km2, stretching 
from the mountainous southern Tianshan fold belt in the 
north to the Tabei uplift in the south (see Fig. 3). It is 
about 400 km long (E-W) and 50–140 km wide (N-S), 
wide to the west and narrowing to the east. Formations 
encountered in the depression consist of Q (Quaternary), 
N2k (upper Neogene), N1-2k (middle Neogene), N1j (lower 
Neogene), E (Paleogene), K (Cretaceous), J (Jurassic) and 
T (Triassic) from top to bottom, which have geological 
ages of 2, 5, 9, 24, 65, 135, 208 and 250 Ma (million 

years), respectively. The major source rocks of the 
depression are middle and lower Jurassic lake-swamp 
coals, and upper and middle Triassic lacustrine mudstones. 
The good quality of source rocks and cap rocks, including 
good Paleogene and Cretaceous sandstone reservoirs 
beneath the regional cap rock, allowed the oil and gas in 
the depression to charge mainly vertically from the source 
rock area to reservoirs in the large gas fields like Kela2 
and Dabei etc. This also allowed major lateral migration 
of oil and gas to form medium-sized condensate oil/
gas fields such as Yaha, Yingmai7 and Yangtake in the 
southern depression 20–30 km away from the source rock 
area (see Fig. 3). Among the 102 exploration wells drilled 
in the depression, two wells intersected commercial oil 
and 56 wells commercial gas[32].

Figure 3
Structures and Reservoirs in the Kuqa Depression 
(modified from [32])
4.2  Calculation Procedure
In this case study about 90,000 points of data, from 102 
drilled wells and 577 pseudo wells taken from seismic 
sections, were used as input data for the executions of 
geohistory, geothermal history, diagenetic history, HC 
generation history, and especially HC expulsion history 
models[33]. In the geohistory model, the combination 
of backstripping and overpressure[5, 15, 34] was the main 
technique used. In the geothermal history model, an 
inversion of geothermics by using vitrinite reflectance 
Ro data as a constraint[5, 35, 36] was used. In the diagenetic 
history model, a simplified dissolution-precipitation model 
of the smectite to illite transformation[37] was used. In the 
HC generation history model, the oil and gas generation 
from kerogen and oil-gas cracking were considered[5, 38, 

39]. In the HC expulsion history model, the oil and gas 
expelled from source rocks were also simulated[5, 33, 40, 41, 

42, 43, 44]. The simulation results of the above five models 
distributed throughout a 3-D geological volume were used 
as input data of the modified 3-D 3-phase black-oil model 
described above.

Black-oil modeling is a forward deduction modeling 
to restore the oil and gas migration-accumulation history 
from past to present (e.g. from 208 to 0 Ma in the Kuqa 
Depression). In most cases, the maximum burial depth 
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of a basin (zmax) occurs at 0 Ma (at the present day), and 
the number of gridcells in the 3-D geological volume 
(Ncell) increases over basin evolution, so Ncell also reaches 
a maximum in the present day. For gridding the 3-D 
geological volume for the depression, the number of 
gridcells at the top of 3-D volume is 809, and Δz=100 m. 
At present, z max=10.8 km, N cell=56,294, and so A  in Eq. 
(36) is 168,882×168,882. The oil and gas were generated 
and expelled from the two source rock formations J and 
T, which form the “sources” q o and q g in Eqs. (28) and 
(29), while the oil and gas might have accumulated in 
any of the formations from Q to T in the depression. 
There are 4,066 inlets (qo and qg) and 5,787 outlets (qw) at 
present. Figs. 4(a) and 4(b) illustrate the gridding of the 
3-D geological volume of the depression at geological 
times 24 and 0 Ma, and contain 4 formations (E, K, J 
and T) and 8 formations (Q, N2k, N1-2k, N1j, E, K, J and 
T) respectively, as samples. In the history simulations, 
the timestep Δt  is chosen as 0.025 Ma, and the maximum 
number of iterations for the Newton and ORTHOMIN 
methods are chosen as 10 and 50, respectively, to ensure 
stability and convergence for solving Eq. (36).

Figure 4
Gridding of the 3-D Geological Volume of the Kuqa 
Depression at 24 Ma and 0 Ma

Figure 6
Cumulative Oil and Gas Accumulations in the 
Cretaceous (K) at 9 Ma

Figure 7
Cumulative Oil and Gas Accumulations in the 
Cretaceous (K) at 5 Ma

Figure 8
Cumulative Oil and Gas Accumulations in the 
Cretaceous (K) at 2 Ma

Figure 5
Cumulative Oil and Gas Accumulations in the 
Cretaceous (K) at 24 Ma

Figure 9
Cumulative Oil and Gas Accumulations in the 
Cretaceous (K) at 0 Ma (at present)
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4.3  Simulation Results
Using the simulation results of the black-oil model, the 
oil and gas migration-accumulation histories of each 
related formation, several conjunctive formations and the 
whole depression can be shown in 3-D or other forms. For 
instance, K contains the biggest oil and gas reservoirs, and 
Figs. 5, 6, 7, 8 and 9 illustrate in 3D the cumulative oil 
and gas accumulations in the Cretaceous (K) at geological 
times 24, 9, 5, 2 and 0, respectively.

4.4  Geological Analyses
By comparing the modeled outcomes with actual 
exploration results, we have made the following four 
findings.

a. The Total Amount of Modeled Accumulations in 
The Whole Depression Agrees with Actual Exploration 
Results : The comparisons of the accumulations predicted 
by modeling with real exploration results are summarized 
in Table 2. It can be seen from Table 2 that: 1) the ratios 
of oil and gas expelled to generated are 46.9% and 95.6%, 
respectively, and the ratios of oil and gas accumulated to 
expelled are 3.0% and 1.2%, respectively. These values 
agree with the pool-forming pattern in western China[45, 

46]; 2) the total amount of gas accumulated is about 5.8 
times larger than that of oil accumulated by both modeling 
and resource assessment, proving that Kuqa is a gas-rich 
depression, where 1 tonne of oil is equivalent to 960 m3 
of gas; 3) the residuals of 7.9% for oil and 9.5% for gas 
between the modeled results and real exploration results 
indicate the simulation results are reasonably good; and 4) 
the modeled oil and gas accumulations are larger than the 
reserves in place, indicating the further prospectivity of 
exploration.

Table 2
The Total Amounts of Modeled Hydrocarbons 
Generated, Expelled, and Accumulated, and Reserves 
in Place by Resource Assessment in the Kuqa 
Depression

                                                     Oil (109 t)   Gas (1012 m3)

Modeled    Generation                        29.4              202.6
    Expulsion                        13.8              193.6
    Accumulation                          0.41                2.3
    Reserves in place by the recent 
    resource assessment         0.38                 2.1
    Absolute relative residuals 
    between modeled accumulation 
    and reserves in place (%)         7.9                9.5

b. The Total Amount of Modeled Accumulations in 
Each Related Formation Agrees with Actual Exploration 
Results : Fig. 10(a) shows modeled oil accumulation data 
indicating: 1) there is no oil in the upper Tertiary (N1j, N1-

2k, N2k), and only a little oil in the lower Tertiary (E); but 
2) the Cretaceous (K) contains the biggest oil reservoir, 
forming 78% of oil in the whole depression. Fig. 10(b) 
shows modeled gas accumulation data indicating: 1) only 
a little gas in the upper Tertiary (N1j, N1-2k); and 2) the 
Cretaceous (K) also contains the biggest gas reservoir, 
which accounts for 74% of gas in the whole depression, 
and the next is the lower Tertiary (E) which accounts 
for 15% of gas in the whole depression. These modeled 
results in each related formation coincide with actual 
exploration results.

Figure 10
Oil and Gas Accumulation Histories of Each Related 
Formation in the Kuqa Depression

c. The Modeled Oil and Gas Reservoirs Are Consistent 
with Actual Exploration Results : A commercial oil flow 
has been discovered in the E (lower Tertiary) Yaha oilfield 
by comparing Fig. 11(a) with Fig. 3; commercial gas 
flows have been discovered in the K (Cretaceous) gas 
fields of Yaha, Yingmai7, Yangtake, Hongqi, Tiergen, 
Yudong, Kela2 and Dabei by comparing Fig. 11(b) with 
Fig. 3.

d. Predictions from The Modeled Results : From the 
modeling results shown in Fig. 11, we have the following 
predictions: some zones are prospective for further 
exploration, such as YM7-HQ2 and DW1 for oil (see 
Fig. 11(a)), and YT1-YT5, YX1 and DQ5 for gas (see 
Fig. 11(b)). This suggests that the lower Tertiary (E) and 
Cretaceous (K) will still form important exploration areas 
within the depression into the future.

The above four findings prove the validity, feasibility 
and practicality of the numerical method to a certain 
extent.
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Figure 11
At 0 Ma (a) Cumulative Oil Accumulation in E (the 
lower Tertiary) and (b) Cumulative Gas Accumulation 
in K (the Cretaceous)

CONCLUSIONS
From the implementation, simulations, and case studies 
using the proposed finite volume method for modeling 3-D 
3-phase secondary migration of oil and gas, we can draw 
the following conclusions:

1) The 3-D 3-phase (water, oil, gas) black-oil model, 
usually used in reservoir simulations, has been modified 
and applied to basin modeling as a new simulator for 
hydrocarbon secondary migration. Since the filtration 
environment and the solutions of basin modeling are much 
more complicated and difficult than those of reservoir 
simulations, we have to use several special processing 
modifications to account for variable simulation ranges, 
very long simulation times, initial conditions, natural 
sources and sinks, and reservoir gridcells.

2) The finite volume method with perpendicular 
bisection (PEBI) gridding is not only easy to implement, 
but also very flexible in dealing with various types of 
gridcells, irregular geometry, and various boundary 
conditions. Its advantages have now been demonstrated 
in the application of both reservoir simulations and basin 
modeling.

3) To ensure the stability and convergence of numerical 
solutions, the fully implicit (both implicit pressure and 
implicit saturation) formulation should be used, and gives 
much more accurate results than the IMPES (implicit 
pressure and explicit saturation) formulation. Moreover, it 
is vital for properly choosing the simulation timestep, and 
the maximum number of iterations for the Newton and 
ORTHOMIN methods.

4) Geologically speaking, our simulations concerning 

the Kuqa Depression agree with actual exploration 
data, which proves the proposed method is accurate 
and feasible. Moreover, some prospects predicted 
by the current modeling have been proved by recent 
exploration[33].
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