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Abstract
Three regression algorithms and three classification 
algorithms have been applied to forecast economics 
of waterflood. The three regression algorithms are the 
regression of support vector machine (R-SVM), the back-
propagation neural network (BPNN), and the multiple 
regression analysis (MRA), while the three classification 
algorithms are the classification of support vector machine 
(C-SVM), the naïve Bayesian (NBAY), and the Bayesian 
successive discrimination (BAYSD). In general, when 
all these six algorithms are used to solve a real-world 
problem, they often produce different solution accuracies. 
In this paper, the solution accuracy is expressed with the 
total mean absolute relative residual for all samples, R(%), 
and it is proposed that an algorithm is applicable if R(%) 
≤ 10. A case study at the Nebraska Panhandle has been 
used to validate the proposed approach. This case study 
consists of two problems: regression and classification. 
The only difference between these two problems is the 
predicted variable in regression problem is real number, 
while the predicted variable in classification problem is 
integer number. And the integer number is determined 
from the real number by using proposed convertion rules. 
For the regression problem, R-SVM, BPNN and MRA are 
inapplicable because their R(%) values are 140, 51 and 
293, respectively. For the classification problem, however, 
C-SVM, NBAY and BAYSD are all applicable since their 
R(%) values are all 0. From the case study, it is concluded 
that: a) For classification problems, the preferable 
algorithm is C-SVM, NBAY, or BAYSD, and BAYSD can 

also serve as a promising dimension-reduction tool; b) for 
regression problems, the preferable algorithm is BPNN, 
but MRA can serve as a promising dimension-reduction 
tool only when the studied problems are linear; c) if 
BPNN is inapplicable for a regression problem because 
its R(%) > 10, it is proposed to change this problem from 
regression to classification by reasonable conversion rules, 
then apply C-SVM, NBAY, or BAYSD; and d) comparing 
with C-SVM, BAYSD is conditionally better than C-SVM.
Key words: Regression; Classification; Solution 
accuracy; Conversion rules; Dimensionality reduction; 
Nebraska Panhandle
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INTRODUCTION
Correlations Company (2001) adopted fuzzy ranking and 
BPNN for the economic evaluation of waterflood[1].

This paper discusses the economic evaluation of 
waterflood using the following three regression algorithms 
and three classification algorithms. The three regression 
algorithms are the regression of support vector machine 
(R-SVM), the back-propagation neural network (BPNN), 
and the multiple regression analysis (MRA), while the 
three classification algorithms are the classification of 
support vector machine (C-SVM), the naïve Bayesian 
(NBAY), and the Bayesian successive discrimination 
(BAYSD). In general, when all these six algorithms are 
used to solve a real-world problem, they often produce 
different solution accuracies. In this paper, the solution 
accuracy is expressed with the total mean absolute relative 
residual for all samples, R(%). In general, it is proposed 
that an algorithm is applicable if R(%) ≤ 5, otherwise this 
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algorithm is inapplicable. In this paper, however, it is 
proposed that an algorithm is applicable if R(%) ≤ 10, 
otherwise this algorithm is inapplicable. This is because 
the subsurface geoscience is different from the other 
fields, with miscellaneous data types, huge quantity, 
different measuring precision, and lots of uncertainties 
to data processing results[2-3]. The case study at the 
Nebraska Panhandle below has been used to validate the 
proposed approach.

1.  METHODOLOGY
The methodology consists of the following three major 
parts: definitions commonly used by regression and 
classification algorithms; methods of six algorithms; 
dimensionality reduction.

1.1  Definitions Commonly Used by Regression 
and Classification Algorithms
The aforementioned regression and classification 
algorithms share the data of samples. The essential 
difference between the two types of algorithms is that 
the output of regression algorithms is real-type value 
and in general differs from the real number given in the 
corresponding learning sample, whereas the output of 
classification algorithms is integer-type value and must 
be one of the integers defined in the learning samples. In 
the view of dataology, the integer-type value is called as 
discrete attribute, while the real-type value is called as 
continuous attribute.

The six algorithms (R-SVM, BPNN, MRA, C-SVM, 
NBAY, BAYSD) use the same known parameters, and 
also share the same unknown that is predicted. The 
only difference between them is the approach and 
calculation results.

Assume that there are n learning samples, each 
associated with m + 1 numbers (x1, x2, …, xm, y*) and a 
set of observed values (xi1, xi2, …, xim, y*

i), with i = 1, 2, 
…, n for these numbers. In principle, n > m, but in actual 
practice n >> m. The n samples associated with m + 1 
numbers are defined as n vectors:

xi = (xi1, xi2, …, xim, y*
i)  (i = 1, 2, …, n), (1)

where n is the number of learning samples; m is the 
number of independent variables in samples; x i is 
the ith learning sample vector; xij is the value of the jth 

independent variable in the ith learning sample, j = 1, 2, …, 
m; and y*

i is the observed value of the ith learning sample.
Equation (1) is the expression of learning samples.
Let x0 be the general form of a vector of (xi1, xi2, …, 

xim). The principles of BPNN, MRA, NBAY and BAYSD 
are the same, that is, try to construct an expression, y = 
y(x0), such that Equation (2) is minimized. Certainly, these 
four different algorithms use different approaches and 
obtain calculation results in differing accuracies.
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where y = y(x0i) is the calculation result of the dependent 
variable in the ith learning sample; and the other symbols 
have been defined in Equation (1).

However, the principles of R-SVM and C-SVM 
algorithms are to try to construct an expression, y = y(x0), 
such that to maximize the margin based on support vector 
points so as to obtain the optimal separating line.

This y = y(x0) is called the fitting formula obtained 
in the learning process. The fitting formulas of different 
algorithms are different. In this paper, y is defined as a 
single variable.

The flowchart is as follows: The 1st step is the learning 
process, using n learning samples to obtain a fitting 
formula; the 2nd step is the learning validation, substituting 
n learning samples (xi1, xi2, …, xim) into the fitting formula 
to get prediction values (y1, y2, …, yn), respectively, so 
as to verify the fitness of an algorithm; and the 3rd step is 
the prediction process, substituting k prediction samples 
expressed with Equation (3) into the fitting formula to get 
prediction values (yn+1, yn+2, …, yn+k), respectively.

xi = (xi1, xi2, …, xim)  (i = n + 1, n + 2, …, n + k),      (3)
where k is the number of prediction samples; xi is the ith 

prediction sample vector; the other symbols have been 
defined in Equation (1).

Equation (3) is the expression of prediction samples.
In the six algorithms, only MRA is a linear algorithm 

whereas the other five are nonlinear algorithms, this is due 
to the fact that MRA constructs a linear function whereas 
the other five construct nonlinear functions, respectively.

To express the calculation accuracies of the prediction 
variable y for learning and prediction samples when 
the six algorithms are used, the following four types of 
residuals are defined.

The absolute relative residual for each sample, R(%)i (i 
= 1, 2, …, n, n + 1, n + 2, …, n + k), is defined as

   * *(%) ( ) 100/i i ii
R y y y ×= -  , (4)

where yi is the calculation result of the dependent variable 
in the ith sample; and the other symbols have been defined 
in Equations (1) and (3). R(%)i is the fitting residual to 
express the fitness for a sample in learning or prediction 
process.

It is noted that zero must not be taken as a value of y*
i
 

to avoid floating-point overflow. Therefore, for regression 
algorithm, delete the sample if its y*

i= 0; and for classification 
algorithm, positive integer is taken as values of y*

i.
The mean absolute relative residual for all learning 

samples, R1(%), is defined as

   
1 1

(%) /i

n

i
R R n

=
∑(%)=  , (5)

where all symbols have been defined in Equations (1) and 
(4). R1(%) is the fitting residual to express the fitness of 
learning process.
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The mean absolute relative residual for all prediction 
samples, R2(%), is defined as

   
2 1

(%) /i

k

i n
R R k

= +
∑(%)= , (6)

where all symbols have been defined in Equations (3) and 
(4). R2(%) is the fitting residual to express the fitness of 
prediction process.

The total mean absolute relative residual for all 
samples, R(%), is defined as

   
1

(%) (%) / ( )i

n k

i
R R n k

+

=
+∑= , (7)

where all symbols have been defined in Equations (1), 
(3) and (4). If there are no prediction samples, k = 0, then 
R(%) = R1(%).

R(%) is the fitting residual to express the fitness of 
learning and prediction processes.

When the six algorithms (R-SVM, BPNN, MRA, 
C-SVM, NBAY, BAYSD) are used to solve a real-world 
problem, they often produce different solution accuracies. 
In this paper, the solution accuracy is expressed with 
R(%) shown in Equation (7), and it is proposed that 
an algorithm is applicable if R(%) ≤ 10, otherwise this 
algorithm is inapplicable.

1.2  Methods of Six Algorithms
The methods of the six algorithms (R-SVM, BPNN, 
MRA, C-SVM, NBAY, BAYSD) are not detailedly 
described here because readers can refer to the relevant 
articles and books (For example: [2-6]).

Through the learning process, each algorithm 
constructs its own function y = y(x). It is noted that y 
= y(x) created by BPNN is an implicit expression, that 
is, which cannot be expressed as a usual mathematical 
formula; whereas that of the other five algorithms are 
explicit expressions, that is, which are expressed as a 
usual mathematical formula.

In the case study below, (a) in C-SVM and R-SVM, 
the kernel function used is the RBF (radial basis function), 
and the termination of calculation accuracy TCA is fixed 
to 10−3; and the insensitive function ε in R-SVM is fixed to 
0.1. (b) in BPNN, Nhidden = 2(Ninput+Noutput)−1 where Nhidden 
is the number of hidden nodes, Ninput is the number of 
input nodes and Noutput is the number of output nodes; TCA 
is fixed to 10−4; And in each iteration, the error takes the 
root mean square error[2, 3, 7] is

 RMSE(%) = * 2

1

1 ( )
n

i iin
y y

=
∑ − ×100 , (8)

where yi and y*
i are under the conditions of normalizations 

in the learning process. RMSE(%) is used in the 
conditions for terminating network learning.

1.3  Dimensionality Reduction
The definition of dimensionality reduction is to reduce 
the number of dimensions of a data space as small as 
possible but the results of studied problem are unchanged. 
The benefits of dimensionality reduction are to reduce 
the amount of data can enhance the calculating speed, 
to reduce the independent variables can extend applying 
ranges, and to reduce misclassification ratio of prediction 
samples can enhance processing quality.

Among the aforementioned six algorithms, each of 
MRA and BAYSD can serve as a promising dimension-
reduction tool, respectively, because the two algorithms 
all can give the dependence of the predicted value (y) on 
independent variables (x1, x2, …, xm), in decreasing order. 
However, because MRA belongs to data analysis in linear 
correlation whereas BAYSD is in nonlinear correlation, 
in applications the preferable tool is BAYSD, whereas 
MRA is available only when the studied problems 
are linear. The called “promising tool” is whether it 
succeeds or not needs a high-class nonlinear tool (e.g., 
BPNN for regression problem, C-SVM for classification 
problem) for the validation, so as to determine how many 
independent variables can be reduced. For instance, the 
classification problem in the case study below indicates 
that a 7-D problem (x1, x2, x3, x4, x5, x6, y) can be reduced 
to 5-D problem (x2, x3, x4, x6, y).

2 .   C A S E  S T U D Y :  E C O N O M I C 
EVALUATION OF WATERFLOOD AT THE 
NEBRASKA PANHANDLE
This case study consists of two problems: regression 
and classification. The objective of this case study is to 
calculate the ratio of secondary to primary oil recovery 
(S/P), and to determine the S/P classification (SPC) for 
oilfields, which has practical value when the waterflood 
has not been installed in oilfields.

Using data of 18 samples from the Nebraska Panhandle 
of the Denver-Julesberg Basin, USA[1], and each sample 
contains 6 independent variables (x1 = lateral area, x2 = 
average porosity, x3 = average permeability, x4 = original 
bottom hole pressure, x5 = cumulative water oil ratio, x6 

= cumulative gas oil ratio) and one variable (y*
 = S/P), 

Correlations Company (2001) adopted fuzzy ranking and 
BPNN for the prediction of S/P[1]. In the case study, among 
these 18 samples, 17 are taken as learning samples and one 
as prediction sample (Table 1) for the prediction of both 
S/P and SPC, in which for S/P using R-SVM, BPNN and 
MRA, and for SPC using C-SVM, NBAY and BAYSD. It 
is noted that this SPC is figured out from S/P by using the 
conversion rules given in Table 2. In Table 2, if S/P ≤ 0.25 
the waterflood is expected to be marginally economic[1].
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Table 1
Input Data for Economic Evaluation of Waterflood at the Nebraska Panhandle

Sample
type

Sample
No.

Six parameters related to ya y*

x1
(acres)

x2
(%)

x3
(10-3 μm2)

x4
(psi)

x5
(bbl/bbl)

x6
(mcf/bbl) S/Pb SPCc

Learning
samples

1 560 17 63 1,328 8.37 0.02 0.56 3

2 2,080 21 212 1,400 6.86 0.92 0.68 3

3 960 20 100 1,300 252.55 0.03 0.96 3

4 1,840 16.8 42 1,240 1.62 0.05 1.17 3

5 24,000 22 400 1,115 0.82 0.00 6.98 3

6 12,000 23.2 44 1,300 2.05 0.55 1.57 3

7 840 17.5 139 1,100 2.15 0.15 0.52 3

8 960 17.4 430 1,000 1.84 2.08 0.02 1

9 1,920 10.7 10 1,590 14.92 10.88 0.02 1

10 1,100 17.5 86 1,546 5.97 0.40 0.32 2

11 800 18.1 60 1,640 2.00 0.26 0.26 2

12 480 15.2 62.2 1,600 2.79 0.01 0.37 2

13 440 19 100 1,240 2.97 0.04 1.18 3

14 1,120 20 150 1,375 6.20 0.03 1.01 3

15 160 16 72 1,510 1.60 0.10 0.4 2

16 1,760 24 400 1,200 37.40 0.03 0.64 3

17 640 21.8 15 1,350 3.57 0.00 0.53 3

Prediction
samples 18 2,320 21.8 15 1,350 3.47 0.01 (1.24) (3)

a x1 = lateral area, x2 = average porosity, x3 = average permeability, x4 = original bottom hole pressure, x5 = cumulative water oil ratio, x6 = 
cumulative gas oil ratio.
b S/P = the ratio of secondary to primary oil recovery, number in parenthesis is not input data, but is used for calculating R(%)i.
c SPC = the S/P classification (1-economic, 2-uneconomic, 3-very uneconomic) determined by Table 2, number in parenthesis is not input 
data, but is used for calculating R(%)i.

Table 2
S/P Classification Based on the Ratio of Secondary to Primary Oil Recovery

Economic evaluation of waterfloods S/P
(The ratio of secondary to primary oil recovery)

SPC
(S/P classification)

Economic ≤ 0.25 1

Uneconomic (0.25, 0.5] 2

Very uneconomic > 0.5 3

2.1  Regression Problem for Calculating the Ratio 
of SECOndary to Primary Oil Recovery (S/P)
Using the 17 learning samples with y* = S/P (Table 
1) and by R-SVM, BPNN and MRA, the following 
three functions of S/P (y) with respect to 6 independent 
variables (x1, x2, x3, x4, x5, x6) have been constructed.

Using R-SVM[2, 3, 4], the result is an explicit nonlinear 
function:

y = R-SVM(x1, x2, x3, x4, x5, x6), (9)
with the penalty factor C = 1, the regularization parameter 
γ = 0.166667, and 13 free vectors xi.

The BPNN[2, 3] used consists of 6 input layer nodes, 1 
output layer node and 13 hidden layer nodes. The result is 
an implicit nonlinear function:

y = BPNN(x1, x2, x3, x4, x5, x6), (10)

with the optimal learning time count topt = 168,640, and 
RMSE(%) = 0.424×10−2.

Using MRA[2, 3], the result is an explicit linear function:
y = −2.43 + 0.000255x1 − 0.0986x2 + 0.000872x3 − 

0.000291x4 + 0.00227x5 − 0.15x6 , (11)
Equation (11) yields a residual variance of 0.092 and a 

multiple correlation coefficient of 0.953. From the regression 
process, S/P (y) is shown to depend on the 6 independent 
variables in decreasing order: x1, x6, x2, x5, x3, and x4.

Substituting the values of 6 independent variables (x1, 
x2, x3, x4, x5, x6) given by the 17 learning samples and one 
prediction sample (Table 1) in Equations (9), (10) and (11), 
respectively, the S/P (y) of each sample is obtained (Table 3).

From Table 4, R-SVM, BPNN and MRA are inapplicable 
because their R(%) values are 140, 51 and 293, respectively.
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Table 3
Prediction Results of S/P at the Nebraska Panhandle

Sample
type

Sample
No.

The ratio of secondary to primary oil recovery (S/P)

y*

Regression algorithm

R-SVM BPNN MRA

y R(%)i y R(%)i y R(%)i

Learning
samples

1 0.56 0.645 15.2 0.669 19.4 0.585 4.5

2 0.68 0.712 4.67 0.466 31.4 0.549 19.2

3 0.96 0.86 10.4 1.37 43 0.985 2.64

4 1.17 0.762 34.9 1.77 50.9 0.919 21.5

5 6.98 1.57 77.5 6.98 0 6.41 8.14

6 1.57 1.35 14.1 5.46 248 2.79 77.7

7 0.52 0.741 42.5 0.28 46.1 0.706 35.8

8 0.02 0.335 1572 0.02 0 0.74 360

9 0.02 0.12 501 0.02 0 -0.179 995

10 0.32 0.441 37.8 0.533 66.4 0.568 77.5

11 0.26 0.36 38.4 0.585 125 0.394 51.6

12 0.37 0.309 16.6 0.413 11.5 0.651 76

13 1.18 0.764 35.2 1.49 26.5 0.4 66.1

14 1.01 0.707 30 1.68 66.4 0.488 51.7

15 0.4 0.407 1.65 0.348 13 0.509 27.3

16 0.64 0.74 15.6 0.59 7.88 0.596 6.81

17 0.53 0.818 54.3 1.36 156 0.076 85.7

Prediction
samples 18 1.24 0.883 28.8 1.15 7.15 0.503 59.5

Table 4
Comparison Among the Applications of Regression Algorithms (R-SVM, BPNN and MRA) to S/P at the Nebraska Panhandle

Algorithm Fitting
formula

Mean absolute relative 
residual

Dependence of the predicted value (y) on 
independent variables (x1, x2, x3, x4, x5, x6), in 

decreasing order

Time consuming on 
PC (Intel Core 2)

Results 
availability

R1(%) R2(%) R(%)

R-SVM Nonlinear,
explicit 147 28.8 140 N/A 3 s Inapplicable

BPNN Nonlinear,
implicit 53.6 7.15 51 N/A 30 s Inapplicable

MRA Linear,
explicit 306 59.5 293 x1, x6, x2, x5, x3, x4 <1 s Inapplicable

2.2  Dimension-Reduction Failed by Using MRA 
and BPNN
MRA gives the dependence of the predicted value (y) on 
6 independent variables, in decreasing order: x1, x6, x2, 
x5, x3, x4 (Table 4). According to this dependence order, 
at first, deleting x4 and running BPNN, it is found the 
results of BPNN are changed, that is, R(%) = 84 which is 
greater much than previous R(%) = 51 (Table 4). Thus the 
7-D problem (x1, x2, x3, x4, x5, x6, y) cannot become 6-D 
problem (x1, x2, x3, x5, x6, y). This is due to the fact that 
this regression problem is a nonlinear problem according 
to R(%) values of R-SVM and MRA are 140 and 293, 
respectively (Table 4). Therefore, MRA can serve as a 

promising dimension-reduction tool only when the studied 
problems are linear.
2.3  Classification Problem for Determining the 
S/P Classification (SPC)
Using the 17 learning samples with y* = SPC (Table 
1) and by C-SVM, NBAY and BAYSD, the following 
three functions of SPC (y) with respect to 6 independent 
variables (x1, x2, x3, x4, x5, x6) have been constructed.

Using C-SVM[2, 3, 4], the result is an explicit nonlinear 
function:

y = C-SVM(x1, x2, x3, x4, x5, x6), (12)
with C = 32, γ = 0.03125, 9 free vectors xi, and the cross 
validation accuracy CVA = 88.26%.



6Copyright © Canadian Research & Development Center of Sciences and Cultures

Economic Evaluation of Waterflood Using 
Regression and Classification Algorithms

Using NBAY[2, 3, 5, 6], the result is an explicit nonlinear 
discriminate function:

 

 2
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22
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jljl
l j
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=
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= ∏
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x
, (13)

where for l = 1, σj1 = 480, 3.35, 210, 295, 6.54, 4.4, μj1 = 
1,440, 14.1, 220, 1,295, 8.38, 6.48; for l = 2, σj2 = 351, 1.16, 
10.26, 49.8, 1.72, 0.15, μj2 = 635, 16.7, 70.1, 1,574, 3.09, 
0.192; For l = 3, σj3 = 7,008, 2.35, 129, 94.9, 71.2, 0.282, 
μj3 = 4,203, 20.2, 151, 1,268, 29.5, 0.165.

Once Equation (13) is created, the values of 6 
independent variables (x1, x2, x3, x4, x5, x6) of any sample 
(Table 1) can be substituted in Equation (13) to obtain 3 

values: N1, N2, N3. If  { }
b 1 3

max ll l
N N

≤ ≤
=  then

                              y = lb , (14)
for this sample.

Using BAYSD[2, 3], the result is an explicit nonlinear 
discriminate function:
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( )

1 1 2

3 4 5 6

2 1 2

3 4 5 6

3 1 2

3 4 5 6

ln(0.118) 116 0 1.15

0.083 0.178 0.019 5.17

ln(0.235) 246 0.001 0.632

0.085 0.317 0.024 18.2

ln(0.647) 171 0.001 1.34

0.057 0.241 0.015 12.9

B x x

x x x x

B x x

x x x x

B x x

x x x x

= − + + +

+ − −

= − + − +

+ − −

= − + + +

+ − −











x

x

x

, (15)

Once Equation (15) is created, the values of 6 
independent variables (x1, x2, x3, x4, x5, x6) of any sample 
(Table 1) can be substituted in Equation (15) to obtain 3 

values: B1, B2, B3. If  { }
b 1 3

max ll l
B B

≤ ≤
=  then

                             y = lb , (16)
for this sample.

From the successive process, SPC (y) is shown to 
depend on the 6 independent variables in decreasing 
order: x6, x4, x2, x3, x1, and x5.

Substituting the values of 6 independent variables (x1, 
x2, x3, x4, x5, x6) given by the 17 learning samples and one 
prediction samples (Table 1) in Equations (12), (13) (and then 
use Equation (14)), and (15) (and then use Equation (16)), 
respectively, the SPC (y) of each sample is obtained (Table 5).

Table 5
Prediction Results of SPC at the Nebraska Panhandle

Sample
type

Sample
No.

The S/P classification (SPC)

y*

Classification algorithm

C-SVM NBAY BAYSD

y R(%)i y R(%)i y R(%)i

Learning
samples

1 3 3 0 3 0 3 0

2 3 3 0 3 0 3 0

3 3 3 0 3 0 3 0

4 3 3 0 3 0 3 0

5 3 3 0 3 0 3 0

6 3 3 0 3 0 3 0

7 3 3 0 3 0 3 0

8 1 1 0 1 0 1 0

9 1 1 0 1 0 1 0

10 2 2 0 2 0 2 0

11 2 2 0 2 0 2 0

12 2 2 0 2 0 2 0

13 3 3 0 3 0 3 0

14 3 3 0 3 0 3 0

15 2 2 0 2 0 2 0

16 3 3 0 3 0 3 0

17 3 3 0 3 0 3 0

Prediction
samples 18 3 3 0 3 0 3 0
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Table 6
Comparison Among the Applications of Regression Algorithms (C-SVM, NBAY and BAYSD) to SPC at the 
Nebraska Panhandle

Algorithm Fitting
formula

Mean absolute relative 
residual

Dependence of the predicted value (y) on 
independent variables (x1, x2, x3, x4, x5, x6), in 

decreasing order

Time consuming on 
PC (Intel Core 2)

Results 
availability

R1(%) R2(%) R(%)

C-SVM Nonlinear,
explicit 0 0 0 N/A 5 s Applicable

NBAY Nonlinear,
explicit 0 0 0 N/A < 1 s Applicable

BAYSD Nonlinear,
explicit 0 0 0 x6, x4, x2, x3, x1, x5 1 s Applicable

From Table 6, C-SVM, NBAY and BAYSD are 
applicable since their R(%) values are all 0.

2.4  Dimension-Reduction From 7-D to 5-D 
Problem by Using BAYSD and C-SVM
BAYSD gives the dependence of the predicted value (y) on 
6 independent variables, in decreasing order: x6, x4, x2, x3, 
x1, x5 (Table 6). According to this dependence order, at first, 
deleting x5 and running C-SVM, it is found the results of 
C-SVM are the same as before, that is, R(%) = 0, thus 7-D 

problem (x1, x2, x3, x4, x5, x6, y) can become 6-D problem 
(x1, x2, x3, x4, x6, y). In the same way, it is found that this 
6-D problem can become 5-D problem by deleting x1, but 
deleting x2 is failed since the results of C-SVM are changed, 
that is, R(%) = 11.1. For this classification problem, 
therefore, the 7-D problem (x1, x2, x3, x4, x5, x6, y) at last can 
become 5-D problem (x2, x3, x4, x6, y).
2.5  Summary of the Case Study
From Tables 4 and 6, Table 7 summarizes the applicability 
of each algorithm in the case study.

Table 7
Summary of the Case Study at the Nebraska Panhandle

Algorithm
type Algorithm

Mean absolute relative 
residual

Dependence of the predicted value (y) 
on independent variables (x1, x2, x3, x4, 

x5, x6), in decreasing order

Time consuming on 
PC (Intel Core 2)

Results 
availability

R1(%) R2(%) R(%)

Regression
Algorithm
(see Table 4)

R-SVM 147 28.8 140 N/A 3 s Inapplicable

BPNN 53.6 7.15 51 N/A 30 s Inapplicable

MRA 306 59.5 293 x1, x6, x2, x5, x3, x4 < 1 s Inapplicable

Classification
Algorithm
(see Table 6)

C-SVM 0 0 0 N/A 5 s Applicable

NBAY 0 0 0 N/A < 1 s Applicable

BAYSD 0 0 0 x6, x4, x2, x3, x1, x5 1 s Applicable

Comparing with C-SVM, the major advantages of 
BAYSD are: (a) BAYSD runs much faster than C-SVM, 
(b) it is easy to code the BAYSD program whereas very 
complicated to code the C-SVM program, and (c) BAYSD 
can serve as a promising dimension-reduction tool. So 
BAYSD is conditionally better than C-SVM.

CONCLUSION
The purpose of this paper is how to select a proper 
algorithm in three algorithms (C-SVM, NBAY, BAYSD) 
for regression problems and three algorithms (R-SVM, 
BPNN, MRA) for regression problems. From the 
aforementioned case study at the Nebraska Panhandle, 
five major conclusions can be drawn as follows:

The definition of solution accuracy R(%), the threshold 
of applicability (R(%) ≤ 10) for an algorithm, and the 
rules of conversion from real number to integer number 
are practical;

For classification problems, the preferable algorithm is 
C-SVM, NBAY, or BAYSD, and BAYSD can also serve 
as a promising dimension-reduction tool;

For regression problems, the preferable algorithm is 
BPNN, but MRA can serve as a promising dimension-
reduction tool only when the studied problems are linear;

If BPNN is inapplicable for a regression problem 
because its R(%) > 10, it is proposed to change this 
problem from regression to classification by reasonable 
conversion rules, then apply C-SVM, NBAY, or BAYSD;

And comparing with C-SVM, BAYSD is conditionally 
better than C-SVM.
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