Interaction of Oxygen With Fe Nanowire-Filled Single-Walled Carbon Nanotubes

Joaquin Moreno, Melanie David, Hideaki Kasai


The interaction of oxygen with Fe nanowire-filled single-walled carbon nanotubes (SWCNT) was investigated using density functional theory calculations. The adsorption energies and stable structures on different adsorption sites on the Fe nanowire-filled SWCNT were obtained and compared with pristine SWCNT. The results show that the oxygen atom adsorbs strongly on a bridge site on the SWCNT surface in all cases, with weaker adsorption energies for the Fe nanowire-filled cases. Meanwhile, the molecular adsorption was enhanced by the presence of Fe while lowering the energy barrier required for dissociation. Thus, filling with Fe enhances the oxygen reduction capabilities of SWCNTs and makes them better catalysts for various applications such us in hydrogen fuel cells.


Carbon nanotubes; Fe nanowire; Oxygen adsorption; Density functional theory

Full Text:



Ajayan, P., Ebbesen, T., Ichihashi, T., Iijima, S., Tanigaki, K., & Hiura, H. (1993). Opening carbon nanotubes with oxygen and implications for filling. Nature, 362(6420), 522-525.

Barberio, M., Barone, P., Bonanno, A., & Xu, F. (2009). Oxygen interaction with single-walled carbon nanotubes. Superlattice Microst, 46(1-2), 365-368.

Collins, P. G., Bradley, K., Ishigami, M., & Zettl, A. (2000). Extreme oxygen sensitivity of electronic properties of carbon nanotubes. Science, 287(5459), 1801-1804.

Dag, S., Gulseren, O., Yildirim, T., & Ciraci, S. (2003). Oxygenation of carbon nanotubes: atomic structure, energetics, and electronic structure. Phys Rev B, 67(16), 165424.

David, M., Kasai, K., Moreno, J., & Kasai, H. (2008). Understanding the bond-making and bond-breaking of Fe-filled SWNT on Ni(111). Surf Interface Anal, 40(6-7), 1098-1102.

David, M., Kishi, T., Kisaku, M., Nakanishi, H., & Kasai, H. (2006). Carbon nanoarch encapsulating Fe nanowire on Ni(111). Jpn J Appl Phys, 45(4), 2869-2871.

Dean, K. A., & Chalamala, B. R. (2000). Current saturation mechanisms in carbon nanotube field emitters. Appl Phy Lett, 76(3), 375.

Dicks, A. (2006). The role of carbon in fuel cells. Power Sources, 152(2), 128-141.

Ebbesen, T. (1997). Carbon nanotubes: Preparation and properties. Boca Raton FL: CRC Press.

Ebbesen, T., Ajayan, P., Hiura, H., & Tanigaki, K. (1994). Purification of nanotubes. Nature, 367(6463), 519.

Giannozzi, P., Car, R., & Scoles, G. (2003). Oxygen adsorption on graphite and nanotubes. J Chem Phys, 118(3), 1003-1006.

Girishkumar, G., Vinodgopal, K., & Kamat, P. (2004). Carbon nanostructures in portable fuel cells: single-walled carbon nanotube electrodes for methanol oxidation and oxygen reduction. J Phys Chem B, 108(52), 19960-19966.

Hammer, B., Hansen, L., & Norskov, J. (1999). Improved adsorption energetics with density-functional theory using revised Perdew-Burke-Ernzerhof functional. Phys Rev B, 59(11), 7413-7421.

He, P., & Dai, L. (2006). Carbon nanotube biosensors. In A. P. Lee (Ed.), BioMEMS and biomedical nanotechnology (vol. 1, pp.171-201). New York: Springer.

Hohenberg, P., & Kohn, W. (1964). Inhomogeneous electron gas. Phys Rev, 136(3B), B864- B871.

Hu, J., Ouyang, M., Yang, P., & Lieber, C. (1999). Controlled growth and electrical properties of heterojunctions of carbon nanotubes and silicon nanowires. Nature, 399(7379), 48-51.

Iijima, S. (1991). Helical microtubules of graphitic carbon. Nature, 354(6348), 56-58.

Kang, D., Park, N., Ko, J., Bae, E., & Park, W. (2005). Oxygen-induced p-type doping of long individual single-walled carbon nanotube. Nanotechnology, 16(8), 1048.

Kangasniemi, K., Condit, D., & Jarvi, T. (2004). Characterization of Vulcan electrochemically oxidized under simulated PEM fuel cell conditions. J Electrochem Soc, 151(4), E125- E132.

Kasai, K., Moreno, J., David, M., Sarhan, A., Shimoji, N., & Kasai, H. (2008). First principles study of electronic and magnetic properties of 3d transition metal-filled single-walled carbon nanotubes. Jpn J Appl Phys, 47(4), 2317-2319.

Kisaku, M., Rahman, M., Kishi, T., Matsunaka, D., Roman, T. A., Diño, W. A, …, Kasai, H. (2005). Diameter dependent magnetic and electronic properties of single-walled carbon nanotubes with Fe nanowires. Jpn J Appl Phys, 44(2), 882-888.

Kohn, W., & Sham, L. (1965). Self-consistent equations including exchange and correlation effects. Phys Rev, 140(4A), A1133- A1138.

Kreese, G., & Joubert, D. (1999). From ultrasoft pseudopotentials to the projector-augmented wave method. Phys Rev B, 59(3), 1758-1775.

Lafuente, E, Munoz, E, Benito, A. M., Maser, W. K., Martinez, M. T., Alcaide, F., & Navarro, R. (2006). Single-walled carbon nanotube supported platinum nanoparticles as fuel cell electrocatalysts. J Mater Res, 21(11), 2841-2846.

Liu, J., Rinzler, A. G., Dai, H., Hafner, J. H., Bradley, R. K.,, Boul, P. J., …, Colbert, D. T. (1998). Fullerene pipes. Science, 280(5367), 1253-1256.

Miyata, Y., Maniwa, Y., & Kataura, H. (2006). Selective oxidation of semiconducting single-walled carbon nanotubes by hydrogen peroxide. J Phys Chem B, 110(1), 25-29.

Monkhorst, H., & Pack, J. (1976). Special points for Brillouin zone integration. Phys Rev B, 13(12), 5188-5192.

Moreno, J., David, M., Kasai, K., Nakanishi, H., & Kasai, H. (2009). Hydrogen peroxide adsorption on Fe-filled single-walled carbon nanotubes: a theoretical study. J Phys: Condens Matter, 21(6), 64219.

Perdew, J., Burke, K., & Ernzerhof, M. (1996). Generalized gradient approximation made simple. Phys Rev Lett, 77(18), 3865-3868.

Perdew, J., Burke, K., & Ernzerhof, M. (1997). Generalized gradient approximation made simple. Phys Rev Lett, 78(7), 1396.

Roen, L., Paik, C., & Jarvi, T. (2004). Electrocatalytic corrosion of carbon support in PEMFC cathodes. Electrochem Solid-State Lett, 7(1), A19-A22.

Saito, S. (1997). Carbon nanotubes for next-generation electronics devices. Science, 278(5335), 77-78.

Tans, S., Devoret, M., Dai, H., Thess, A., Smalley, R., Geerligs, L., & Dekker, C. (1997). Individual single-wall carbon nanotubes as quantum wires. Nature, 386(6624), 474-477.

Tans, S., Verschueren, A., & Dekker, C. (1998). Room-temperature transistor based on a single carbon nanotube. Nature, 393(6680), 49-52.

Wang, J. (2005). Carbon-nanotube based electrochemical biosensors: A review. Eletcroanal, 17(1), 7-14.

Wang, X., Li, W., Chen, Z., Waje, M., & Yan, Y. (2006). Durability investigation of carbon nanotube as catalyst support for proton exchange membrane fuel cell. Power Sources, 158(1), 154-159.

Wong, E., Sheehan, P., & Lieber, C. (1997). Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes. Science, 277(5334), 1971-1975.

Xie, J., Wood, D., Wayne, D., Zawodzinski, T., Atanassov, P., & Borup, R. (2005). Durability of PEFCs at high humidity conditions. J Electrochem Soc, 152(1), A104-A113.

Zhao, Q., Gan, Z., & Zhuang, Q. (2002). Electochemical sensors based on carbon nanotubes. Electroanal, 14(23), 1609-1613.



  • There are currently no refbacks.


If you have already registered in Journal A and plan to submit article(s) to Journal B, please click the CATEGORIES, or JOURNALS A-Z on the right side of the "HOME".

We only use the following emails to deal with issues about paper acceptance, payment and submission of electronic versions of our journals to databases:;;;

Copyright © Canadian Research & Development Centre of Sciences and Cultures (CRDCSC)
Address:758, 77e AV, Laval, Quebec, H7V 4A8, Canada

Telephone: 1-514-558 6138
Http://; Http://;