Proterozoic Charnockites at 1.6 & 1.0 Ga in the Eastern Ghats Belt, India, Mirror Secular Evolution of Continental Crust
Abstract
As the Earth continued to cool down, the chemistry of granitic rocks reflect the changing conditions &/or processes of continental crust formation. Compared to the 1.0 Ga charnockites, the 1.0 Ga charnockites in the Eastern Ghats Belt, are more potassium and Rubidium rich, with more negative Eu anomalies and show much less HREE fractionation. Thus the 1.0 Ga charnockites are more evolved in composition and this is consistent with secular evolution of the continental crust throughout the Proterozoic era.
Keywords
Full Text:
PDFReferences
Bhattacharya, S., Kar, R., Misra, S., & Teixeira, W. (2001). Early Archaean continental crust in the Eastern Ghats granulite belt, India: Isotopic evidence from a charnockite suite. Geological Magazine, 138, 609-618.
Bhattacharya, S., Basei, M., & Kar, R. (2014). Charnockite massifs: Key to tectonic evolution of the Eastern Ghats Belt, India and its Columbia connection. Advances in Natural Science, 7, 1-11.
Bhattacharya, S. (2003). Dehydration melting in mafic rocks in the Eastern Ghats belt, India: Implications for variable composition of charnockitic melt and heterogeneity of source rocks. Memoir Geological Society of India, 52, 131-144.
Bhattacharya, S., Das, P., Chaudhary, A. K., & Saw, A. K. (2010). Mafic granulite xenoliths in the Eastern Ghats belt: Implications for lower crustal processes in the south eastern Indian Peninsula. Indian Journal of Geology, 80, 55-69.
Bhattacharya, S., & Chaudhary, A. K. (2010). Secular evolution of the Continental crust: Recorded from massif-type charnockites of Eastern Ghats belt, India. Natural Science, 2, 1079-1084.
Bhattacharya, S., & Kar, R. (2002). High-temperature dehydration melting and decompressive P-T path in a granulite complex from the Eastern Ghats, India.Contribution to Mineralogy and Petrology, 143, 175-191.
Bhui,U. K., Sengupta, P., & Sengupta, P. (2007). Phase relations in mafic dykes and their host rocks from Kondapalle, Andhra Pradesh, India: Implications for the time-depth trajectory of the Paleoproterozoic (Archaean?) granulites from southern Eastern Ghats belt. Precambrian Research, 156, 153-174.
Dobmeier,C., & Raith, M. M. (2003). Crustal architecture and evolution of the Eastern Ghats belt and adjacent regions of India. Geological Society London Special Publication, 206, 145-168.
Kar, R, Bhattacharya, S., & Sheraton, J. W. (2003). Hornblende-dehydration melting in mafic rocks and the link between massif-type charnockite and associated granulites, Eastern Ghats Granulite Belt, India. Contribution to Mineralogy and Petrology, 145, 707-729.
Kemp, A. I. S., & Hawkesworth, C. J. (2004). Granitic perspectives on the generation and secular evolution of the continental crust. Treatise on Geochemistry, 3, 349-411.
Korhonen, F. J., Brown, M., Clark, C., & Bhattacharya, S. (2013).O sumillite-melt interactions in ultrahigh temperature granulites: phase equilibria modelling and implications for the P-T-t evolution of the Eastern Ghats province, India. Journal of Metamorphic Geology, 31, 881-907.
Patino Douce, A. E., & Beard, J. S. (1995). Dehydration melting of biotite-gneiss and quartz amphibolite from 3 to 15 Kbar. Journal of Petrology, 36, 707-738.
Rudnick, R. L., & Gao, S. (2004). Composition of the continental crust.Treatise on Geochemistry, 3, 1-65.
Sen, S. K., Bhattacharya, S., & Acharyaa, A. (1995). A multi-stae pressure-temperature record in the Chilka Lake granulites: The epitome of the metamorphic evolution of the Eastern Ghats, India? Journal of Metamorphic Geology, 13, 287-298.
Soesoo, A. (2000). Fractional crystallization of mantle-derived melts as a mechanism for some I-type granite petrogenesis: An example from the Lachlan fold belt, Australia. Journal of the Geological Society, London, 157, 135-149
SubbaRao, M. V., & DivakaraRao,V. (1988). Chemical constraints on the origin of the charnockites in the Eastern Ghats Mobile Belt, India. Chemical Geology, 69, 37-48.
Taylor, S. R., & McLennan, S. M. (1985). The continental crust: Its composition and evolution. Oxford: Blackwell Publishing.
Wolf, M. B., & Wyllie, P. J. (1994). Dehydration melting of amphibolite at 10 Kbar: Effects of temperature and time. Contribution to Mineralogy and Petrology, 115, 369-383.
DOI: http://dx.doi.org/10.3968/8712
DOI (PDF): http://dx.doi.org/10.3968/pdf
Refbacks
- There are currently no refbacks.
Copyright (c) 2016 Samarendra Bhattacharya, A.K. Saw, A.K. Chaudhary
This work is licensed under a Creative Commons Attribution 4.0 International License.
Reminder
How to do online submission to another Journal?
If you have already registered in Journal A, then how can you submit another article to Journal B? It takes two steps to make it happen:
1. Register yourself in Journal B as an Author
Find the journal you want to submit to in CATEGORIES, click on “VIEW JOURNAL”, “Online Submissions”, “GO TO LOGIN” and “Edit My Profile”. Check “Author” on the “Edit Profile” page, then “Save”.
2. Submission
Go to “User Home”, and click on “Author” under the name of Journal B. You may start a New Submission by clicking on “CLICK HERE”.
We only use the following emails to deal with issues about paper acceptance, payment and submission of electronic versions of our journals to databases:
caooc@hotmail.com; office@cscanada.net; office@cscanada.org
ans@cscanada.net;ans@cscanada.org
Articles published in Advances in Natural Science are licensed under Creative Commons Attribution 4.0 (CC-BY).
ADVANCES IN NATURAL SCIENCE Editorial Office
Address: 1055 Rue Lucien-L'Allier, Unit #772, Montreal, QC H3G 3C4, Canada.
Telephone: 1-514-558 6138
Website: Http://www.cscanada.net; Http://www.cscanada.org
E-mail:caooc@hotmail.com; office@cscanada.net
Copyright © 2010 Canadian Research & Development Centre of Sciences and Cultures