The Dynamic and Collision Features of Microscopic Particles Described by the Nonlinear Schrödinger Equation in the Nonlinear Quantum Systems
Abstract
The dynamic and collision features of microscopic particles described by nonlinear Schrödinger equation are investigated deeply using the analytic and the Runge-Kutta method of numerical simulation. The results show that the microscopic particles have a wave-corpuscle duality and are stable in propagation. When the two microscopic particles are collided, they can go through each other and retain their form after their collision of head-on from opposite directions, This feature is the same with that of the classical particles. However, a wave peak of large amplitude, which is a result of complicated superposition of two solitary waves, occurs in the colliding process. This displays the wave feature of microscopic particles. Therefore, the collision process shows clearly that the solutions of the nonlinear Schrödinger equation have a both corpuscle and wave feature, then the microscopic particles represented by the solutions have a wave-corpuscle duality. Obviously, this is due to the nonlinear interaction b||2. Thus we can determine the nonlinear Schrödinger equation can describe correctly the natures and properties of microscopic particles in quantum systems.
Key words: Microscopic particle Schrödinger equation; Wave-corpuscle duality; Nonlinear interaction; Collision; Propagation; Quantum mechanics
Keywords
References
1] Bohr, D., & Bub, J. (1935). Phys. Rev., 48, 169.
[2] Schrödinger, E. (1935). Naturwissenschaften., 23, 807.
[3] Schrödinger, E. (1926). Phys. Rev., 28, 1049.
[4] Heisenberg, W. Z. (1925). Zeitschrift der Physik, 33, 879.
[5] Born, M., & Infeld, L. (1934). Proc. Roy. Soc. A, 144, 425.
[6] Dirac, P. A. M. (1948). Phys. Rev., 73, 1092.
[7] Diner, S., Farque, D., Lochak, G., & Selleri, F. (1984). The Wave-Particle Dualism. Riedel, Dordrecht (pp. 34-96).
[8] Ferrero, M., & Van der Merwe A. (1997). New Developments on Fundamental Problems in Quantum Physics. Kluwer, Dordrecht (pp. 56-97).
[9] Ferrero, M., & Van der Merwe A. (1995). Fundamental Problems in Quantum Physics. Kluwer, Dordrecht (pp. 48-91).
[10] Broglie de L. (1955). Nuovo Cimento, 1, 37.
[11] Bohm, D. (1951). Quantum Theory (pp. 36-98). Prentice-Hall Englewood Cliffs, New Jersey.
[12] Potter, J. (1973). Quantum Mechanics (pp. 43-105). North-Holland Publishing Co., Amsterdan.
[13] Jammer, M. (1989). The Concettual Development of Quantum Mechanics. Tomash, Los Angeles.
[14] Bell, J. S. (1987). Speakable and Unspeakable in Quantum Mechanics (pp. 51-132). Cambridge University Press, Cambridge.
[15] Einstein, A., Podolsky, B., & Rosen, N. (1935). Phys. Rev., 47, 777.
[16] French, A. P., & Einstein, A. (1979). Centenary Volume (pp. 64-112). Harvard University Press, Cambridge, Mass.
[17] PANG, X. F. (1985). Problems of Nonlinear Quantum Mechanics (pp. 23-167). Sichuan Normal University Press, Chengdu.
[18] PANG, Xiaofeng & FENG, Yuanping (2005). Quantum Mechanics in Nonlinear Systems. New Jersey, World Scientific, Publishing Co..
[19] PANG, Xiaofeng (1994). Theory of Nonlinear Quantum Mechanics. Chongqing, Chinese Chongqing Press.
[20] PANG, Xiaofeng (2009). Nonlinear Quantum Mechanics (pp. 1-312). Beijing, Chinese Electronic Industry Press.
[21] PANG, Xiaofeng (2008). Physica B, 403, 3571.
[22] PANG, Xiaofeng (2008). Fronts of Physics in China, 3, 243.
[23] PANG, Xiaofeng (2008). Nature Sciences, 3(1), 29.
[24] PANG, Xiaofeng (2007). Nature Sciences, 2(1), 42.
[25] PANG, Xiaofeng, Mod. (2009). Phys.Lett., B, 23, 939.
[26] PANG, Xiaofeng (2010). Physica B, 405, 2317.
[27] PANG, Xiaofeng (2009). Physica B, 405, 4327.
[28] PANG, Xiaofeng (1982). Chin. Nature Journal, 4, 254.
[29] PANG, Xiaofeng (2003). Soliton Physics. Chengdu: Sichuan Science and Technology Press.
[30] GUO, Bailin & PANG, Xiaofeng (1987). Solitons. Beijing: Chinese Science Press.
[31] PANG, X. F. (2008). Physica B, 403, 4292.
[32] PANG, X. F. (2008). Frontiers of Physics in China, 3, 413.
[33] PANG, X. F. (2008). Nature Sciences, 3, 29.
[34] PANG, X. F. (1985). Chin. J. Potential Science, 5, 16.
[35] PANG, X. F. (1991). The Theory of Nonlinear Quantum Mechanics. In Lui Hong (Ed.), Research of New Sciences (pp. 16-20). Beijing, Science and Tech. Press.
[36] PANG, X. F. (2006). Research and Development and of World Science and Technology, 28, 11.
[37] PANG, X. F. (2006). Research and Development and of World Science and Technology, 24, 54.
[38] PANG, X. F. (2006). Features of Motion of Microscopic Particles in Nonlinear Systems and Nonlinear Quantum Mechanics. In Sciencetific Proceding-Physics and Others (pp. 53-93), Atomic Energy Press, Beijing.
[39] Zakharov, V. E., & Shabat, A. B. (1972). Sov. Phys. JETP, 34, 62.
[40] Zakharov, V. E., & Shabat, A. B. (1973). Sov. Phys. JETP, 37, 823.
[41] PANG X. F. (1985). J. Low Temp. Phys., 58, 334.
[42] PANG X. F. (1989). Chinese J. Low Temp. and Supercond, 10, 612.
[43] PANG, X. F. (2008). J. Electronic Science and Technology of China, 6, 205.
[44] CHEN, H. H., & LIU, C. S. (1976). Phys. Rev. Lett., 37, 693.
[45] CHEN, H. H. (1978). Phys. Fluids, 21, 377.
[46] PANG, X. F. (2009). Mod. Phys. Lett. B, 23, 939.
[47] PANG, X. F. (1993). Chin. Phys. Lett., 10, 437.
[48] Sulem, C., & Sulem, P. L. (1999). The Nonlinear Schrödinger Equation: Self-Focusing and Wave Collapse (pp. 26-89). Springer, New York.
[49] Makhankov, V. G., & Fedyanin, V. K. (1984). Phys. Rep., 104, 1.
[50] Makhankov, V. G. (1978). Phys. Rep., 35, 1.
[51] PANG, X. F. (2009). Physica B, 404, 3125.
[52] ANG, X. F. (2009). Mod. Phys. Lett. B, 23, 2175.
[53] PANG, X. F. (2003). Phys. Stat. Sol. (b), 236, 34.
[54] PANG, X. F. (2007). Nature Sciences, 2, 42.
[55] PANG, X. F. (2000). Phys. Rev. E, 62, 6989.
[56] Desem, C., & Chu, P. L. (1992). Soliton-Soliton Interactions in Optical Solitons. In J. R. Taylor (Ed.) (pp. 107-351). Cambridge University Press, Cambridge.
[57] Tan, B., & Bord, J. P. (1998). Davydov Soliton Collisions. Phys. Lett., A240, 282.
[58] Stiefel, J. (1965). Einfuhrung in Die Numerische Mathematik. Teubner Verlag, Stuttgart.
[59] Atkinson, K. E. (1987). An Introdution to Numerical Analysis. Wiley, New York Inc..
[60]Aossey, D. W., Skinner, S. R., Cooney, J. T., Williams, J. E., Gavin, M. T., Amdersen, D. R., & Lonngren, K. E. (1992). Phys. Rev., A45, 2606.
DOI: http://dx.doi.org/10.3968/j.ans.1715787020120504.1977
DOI (PDF): http://dx.doi.org/10.3968/g3319
DOI (indexed/included/archived): http://dx.doi.org/10.3968/g4599
Refbacks
- There are currently no refbacks.
Copyright (c)
Reminder
We are currently accepting submissions via email only.
The registration and online submission functions have been disabled.
Please send your manuscripts to ans@cscanada.net,or ans@cscanada.org for consideration. We look forward to receiving your work.
Articles published in Advances in Natural Science are licensed under Creative Commons Attribution 4.0 (CC-BY).
ADVANCES IN NATURAL SCIENCE Editorial Office
Address: 1055 Rue Lucien-L'Allier, Unit #772, Montreal, QC H3G 3C4, Canada.
Telephone: 1-514-558 6138
Website: Http://www.cscanada.net; Http://www.cscanada.org
E-mail:caooc@hotmail.com; office@cscanada.net
Copyright © 2010 Canadian Research & Development Centre of Sciences and Cultures