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Abstract
In this paper, we consider certain nonlinear difference
equations
BN, A, + gyl yan =0 -
where

(a) a, B are positive constants;

(b) {g,} are positive real sequences.nyEN, = {1,2-}.
Oscillation and nonoscillation theorems of the above
equation is obtained.
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INTRODUCTION

In this paper, we consider certain quasilinear difference
equations

A2(‘A2 n|mA2 )T qn\yr(n)|ﬁilyr(n): 0,

where

(a) a, p are positive constants;

(b){q,} are positive real sequences.nyEN, = {1,2:+};

(c)t(n) < n, lim,—>o ,7(n) = .

The equation which can also be expressed as

A(AW) + gyl =0, (1)

in terms of the asterisk notation
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&= | sgn &= & E EER, y > 0.

It is clear that if {y,} is a eventually positive solution
of (1), then —{y,} is a eventually negative solution of (1).

Lemma 1.1. Assume that {y,} is a eventually positive
solution of (1). then one of the following two cases holds
for all sufficiently large n:

1:Ay,>0,A%,>0,A(A%,)" >0,

I: Ay,> 0, A%, <0, A(A%,)" > 0.

Proof. From (1.1), we have A*(A%y,)* < 0 for all
large n. It follows that Ay,, A’y,, A(A’y,)"" are eventually
monotonic and one-signed.

a) if A(A%,)"" < 0 eventually. Then combining this with
A’(A%y)"" < 0,we see that lim, ,, (A’y,)"" = -oo. That is
A’y,—oo for all large n. It follows that Ay,— -, y,—>-0,
which contradicts the positivity of {y,}.

b) if A(A’y,)" > 0 eventually. Then combining this with
A(N’y,)" < 0,we see that A(A’y,)— 0 or — a > 0 so

n—1
(A'p,)" =Ny + D (Ay,)"
N

If (A%,)*"> 0 > 0, That is A’y,> 0 is increasing and —
C or oo, It follows that Ay, > 0; if (A’y,)* < 0, that is A%y,
< 0 is increasing and — d or 0. If Ay, < 0 Then y,—o0, it
is impossible, so Ay,> 0. This complete the proof of the
lemma.

From Lemma (1.1), we know Ay,, A’y,, A(A%,)" tend
to finite or infinite limits as n — . Let

lim, ., Ay, =, i=0,1,2 and lim, ., A(A’y,)" = o,

It is that w; is a finite nonnegative number. One can
easily show that:

If y, satisfies I, then the set of its asymptotic values w,
falls into one of the following three cases:

I wy=w,=w,=0, w;€(0,0),

L:wy=w,=w,=©, w;E(0,0),

L wy=w, =0, 0,€(0,0), w;=0.

If y, satisfies 11, then the set of its asymptotic values o,
falls into one of the following three cases:

II;: wy=0, 0, €(0,0), w,=w;=0,



IL:wy=0,0,=w,=w;=0,

I : 0w, €(0,0), 0, =w,=w;=0.

Equivalent expressions for these six classes of positive
solutions of (1) are as follows:

yﬂ
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I, ~=const >0,
n—>0 n

1, ~=0,limy, =,
n—>0 n Hn—>00

I '111_>11010 T =const > 0. I ligzyn = const .
n ¢ Let y, be a positive solution of (1), such that y,> 0, y,,
lim Yo _ 0. lim Yu _ 0, >0 forn>N> n,. Summing (1) from 7 to oo gives
Iz: n—o0 24 ’ n—0 n2 2
n “ A(A yn “ _w3+zqs(yr(n)) nZN (2)
I, 11_1)1; oL const >0 If y, is a solution of type (i = 1,2,3), then sum (2)
n “ three times over [N, n — 1] to obtain
n—1 s—1 © i
Vo =ko +h (n=N)+ 3 (n=5)k," + 3 (@5 + 24, (9:0)) )], 3)
s=N r=n o=r

for n > N where k, = y,, k, = Ay, k, = A’y are nonnegative
constants. The equality (3) gives a representation for
a solution y, of type—I,. A type—I, solution y, of (1) is
expressed by (3) with w; =0

v, =k, +k1(n—N)+§(n—s)[a)2“

s=N

A representation for a solution y, of type II, is derived by summing (2) with w, =

fromNton—1:

If y, is a solution of type I;, then, first summing (1)
from n to « and then summing the resulting equation
twice times over [N, n — 1] to obtain

o0 i
> (r=94,(y;)" 1%, n>N. (4)

0. Twice from 7 to o and then once

=k +Z(wl+2[2(0 N (Vo) ] ) n>N, )

r=s o=r

a representation for a solution y, of type II, is given by (5)
with @, = 0. A representation for a solution y, of type II ;
is derived by summing (2) with w; = 0 three times from n
to oo yield

— 0, =Y (=Y (=9, (7o) 17, 1> N (6)

MAIN RESULTS

Theorem 1. The Equation (1) has a positive of type — I, if
and only if

S g, (cn)

n=n,

B <o, (7

Proof. Neccessary. Suppose that (1) has a positive of

G(n,N) = Z(n $)(s — )a =
G(n,N) = 0

Let B, be the Banach space of all real sequences Y = {y,}, with the norm ||Y]| =

bounded and convex subset Q of B,, as follows:

type — 1,. Then it satisfies (3) for n > N, which implies that
2.4, (x(m)" <.
n=N
This together with the asymptotic relation

Ve
122 Sl const >0 shows that the condition (7) is
n o
satisfied.
Sufficently. Suppose now that (7) holds. Let £ > 0 be
any given constant.
Choose N > n, large enough so that

ENCSNNNYA e
((OHD(2 ol an(r(n)) “ps

(k)" —k“

(2k)” ®)

Put N.=min{N, infz(n)}, and define
n>N
a’ .
S — . N S
(a+DQRa+1) .
n<N

sup [y,| < oo, we define a closed,

n>n,

Q={vr={y,}eB, kG(n,N) <y, <2kG(n,N), n>N,}

Define the map T Q —B,, as follows:
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n-l1 s—1 0 1
Ty, =3 (-0 (K + 34, (v.))" 1% n2N
N N o=r
Ty, =Tyy N.<n<N
©)

a) Tmaps Q into Q for yn € Q, then forn >N
1

Ty, > Kni(n —s)(s=N)* =kG(n,N).

and

1, < S0k + iqa(%f(f(c),]\’)ﬁ))];

< i (n- s)[Z(

1

k— .
e

)ﬁ )qu( )"

< 2k"2(n —s)(s—N)* =2kG(n,N).

b) T'is continous. Let y* €Q & Q such that Ilcljg”y “

(™),

by using Lebesgue’s dominated convergence theorem, we
can conclude that

1im||Ty(k) - Ty” =0

k—o

¢) Tis uniformly-cauchy, Vn,,n, > N,

= }Hi(n_s)[i(ka +iqa’(yr(o'))ﬂ)];
_Z(l’l S) Z(ka+zqa(yr(0')) )]

S - 4 3, ()

Therefore, by the Schauder fixed point theorem, there
exists a fixed 7y = y, which satisfies (1). This completes
the proof.

Theorem 2. The Equation (1) has a positive of type —
I;, if and only if

7y, -1y,

D ng, (z(n))” <o, (10)

Proof. Neccessary. Suppose that (1) has a positive of
type — 1. Then, it satisfies (4) for n > N, which implies

n-1

Ty, = 3 (n-)N2k" =Y (r~

r=s

Tyn :TyN

The proof is similar to that of theorem 1 and there exists

an element y such that y="T7y, which is a type — I; solution
. 2

of (1) with the property that 122A Yy =2k>0 | this

completes the proof.
Theorem 3 The Equation (1) has a positive of type —
II, if and only if
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(1), [ = S - + X, (v

(o)

o

(k)

VO = S 0= + X, ()0

hat 3 (1= N)g, (z(m)’ <oo.

n=n,
This together with the asymptotic relation

Y

lim =% = const > 0 shows that the condition (8) is

n—>x0 n

satisfied.

Sufficently. Suppose now that (8) holds. Let £ > 0 be
any given constant.
Choose N > n, large enough so that

2k)* -k
(2k)”
min{¥, infz(n)}, Let By be the Banach space

n>N

> ng,(x(n)* < (11)

Put N. =

of all real sequences
Y = {y,}, with the norm ||Y]| = sup |y,| < oo,we define a

n>n,

closed, bounded and convex subset Q of By, as follows:
Q:{Y:{ e B, %(n—N)i <y, <k(n-N)?, nZN*}
where n - N, =n-Nifn>N,andn-N.=0i1fn <N.
Define the map 7: Q—B,, as follows:

1

S)qr(yr(r))ﬂ];> nzN

N,<n<N
3 (12)
n=N

1
o
<o

Proof. Neccessary. Suppose that (1) has a positive of

{i(s—n)qs (2(s))”

s=n

type — 11 . Then, it satisfies (4) for n > N, which implies
that Z(n - N)qn (yr(n))ﬂ < oo
n=N

14



This together with the asymptotic relation

P .. .
lim=* = const >0 gshows that the condition (12) is

n>e g
satisfied.

Sufficently. Suppose now that (12) holds. Let £ > 0 be
any given constant.

Choose N>n, large enough so that

1

A

|~ a £
Z|:Z(S_n)qsyr(x)ﬂi| <2k «.
n=N|[_s=n

Put N. = min{N, infz(n)}, Let B, be the Banach space
n>N

of all real sequences
Y = {y,}, with the norm |[Y|| = sup |y,| < o, we define

n=n,

a closed, bounded and convex subset Q of B), as follows:

Q={r={y,}eB, kn<y, <2kn, n>N,}
Define the map 7: Q—B,, as follows:

n

n-1 0 1

Ty, =kn+ 3 S[> (6 =g, (.01
Ty, =kn S

n>N
N, <n<N
(13)

The proof is similar to that of theorem 1 and there
exists an element y such that y = 7y, which is a type — 11,

solution of (1) with the property that }111_{2 Ay, =k >0,

this completes the proof.
Theorem 4 The equation (1) has a positive of fype —11
; if and only if

1
Sl So-ma, | <o 0

Proof. Neccessary. Suppose that (1) has a positive of
type —1I1,. Then, it satisfies (6) for n > N, which implies that

in[i(s -, (y,m)ﬂ}” <.

This together with the asymptotic relation
limy, =const >0 shows that the condition (14) is

n—»0
satisfied.

Sufficently. Suppose now that (14) holds. Let £ > 0 be
any given constant.

(15)

1
Y:{yn}eBN -

2a

Q:

1

Define the map T: Q— B, as follows:

n

Ty, = Z(”—S)Bii(a)qa(yf(g))”r n>N

N N o=r

Ty, =0
21

5 2+
(n_N)+ Syn <n “,

N,<n<N
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Choose N > n, large enough so that

2 [& . 1t
Z"{Z(S—n)qs(yf(s))ﬁ} <%kl «. (16

Put N. = min{N,infz(n)}, Let By be the Banach space
n>N
of all real sequences

Y = {y,}, with the norm ||Y]| = sup |y,| < ,, we define

n>n,

a closed, bounded and convex subset Q of B, as follows:

Q:{Y:{ .}e By gﬁynﬁk, nZN*}

Define the map T: Q—B,, as follows:

1

Ty, =k—i(s—n){i(r—S)q,(y,<r>)ﬂ}a nzN
' N.<n<N
(17)

The proof is similar to that of theorem 1 and there
exists an element y such that y = 7y, which is a type — 11,

Ty, =Tyy

solution of (1) with the property that ll—{g Ay, =k >0,

this completes the proof.
Theorem 5 The Equation (1) has a positive of fype —

L if

1
> 2+—)p
2.4, (x(n) " <o,

(18)
and 0
> nq,(x(n)* =0 (19)

Proof. Suppose now that (18) holds. Choose N > n,
large enough so that

Zw:qn (r(n))m;)ﬁ < 1 ((0! +DQ2a +1)

). (20)

- 2a+l a2
Put N. = min{N,infz(n)}, Let By be the Banach space
>N
of all real sequencesn

Y = {y,},with the norm ||Y]| = sup |y, < w0, we

n>n,
define a closed, bounded and convex subset Q of B, as
follows:

1

n=>N, ;.

The proof is similar to that of theorem 1 and there
exists an element y such that y = Ty, which is a type—1,

solution of (1) with the property that }11—{2 Ay, =k >0,

this completes the proof.
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Theorem 6 The Equation (1) has a positive of fype —
IL, if
1

in{i (s—n)q, (T(s))ﬁ}a < 00,

(22)

and

0

2

n=n,

0

>

n

(s— n)qs}a =o0- (23)

Proof. Suppose now that (22) holds. Choose N > n,
large enough so that

B B

in[i (s —n)g, (z(s))” T <2k a

Put N.

24

min{N, infz(n)}, Let B, be the Banach space
n>N

of all real sequences

Y = {y,}, with the norm ||Y|| = sup |y,| < o, we
n>n,
define a closed, bounded and convex subset Q of B, as
follows:
Q={r={y,}eB, k<y, <2kn, n>N,}

Define the map 7: Q— B, as follows:

n=1 oo 0 o
N s Lo=r
Ty, =k N.<n<N
(25)

The proof is similar to that of theorem 1 and there
exists an element y such that y = 7y, which is a fype—I1,
solution of (1). This completes the proof.
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