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Abstract
The original purpose of this paper was to provide 
answers to the question: “Why is a negative number 
time a negative number equal a positive number”. This 
concept is one of the most mysterious topics taught 
in any mathematics classroom. Yet this fundamental 
mathematical idea is listed in most algebra text books 
as a rule without any justification for the validity of 
the rule. While researching this issue it became clear 
that the decimal place value system, and in particular 
the real value number system was just as mysterious. 
Hence the decision was taken to broaden the scope 
of the paper to include some of the issues associated 
with the real number system; and to outline some of 
the topics a mathematics student should be acquainted 
with.
Key words:  Negative and positive numbers; Real 
numbers; System; Negative number times

Beecher,  B.  (2015).  The Real  Numbers  System and Why a 
Negative Number Times a Negative Number Equals a Positive 
Number. Advances in Natural Science ,  8 (1), 1-13. Available 
from: http://www.cscanada.net/index.php/ans/article/view/6595 
DOI: http://dx.doi.org/10.3968/6595

INTRODUCTION
According to Research and Development Institute of 
Sycamore, Illinois (2006):

It is believed by neuropsychologists that humans are born with 
“number sense”, or an innate ability to perceive, process, and 

manipulate numbers. It is an intuitive ability to attach meaning 
to numbers and number relationships, to understand the 
magnitude of numbers as well as the relativity of measurement 
of numbers, and to use logical reasoning for estimation.

The State of Ohio Mathematics Standards -Number, 
Number Sense and Operations: Standard Number: 13

Grade: K student should be able to: Recognize the number or 
quantity of sets up to 5 without counting; e.g., recognize without 
counting the dot arrangement on a domino as 5.

So according to the biologist and other human beings 
are born with an innate ability to recognize five objects 
without counting them. So it thus appears that to be able 
to count beyond the number five an organized symbolic 
numbers system is required. 
      A.  What is a Number?  
    Numbers don’t exist physically. They were created for 
handling real world situations to solve every day problems.

In general a number system consists of a set of 
symbols used to express quantities as the basis for 
counting, determining order, comparing quantities, 
performing calculations, and representing values- 
Number System-Science Zine (2014). In general, a 
number system is a set of objects (often numbers), 
operations, and the rules governing those operations. 
One example is our familiar real number system, which 
uses base ten numbers; another example is the binary 
number system. Thus given a set of characters and some 
mathematical rules, it is possible to create a new number 
system. Examples of other number systems include the 
Arabic, Indian, Babylonian, Chinese, Egyptian, Greek, 
Mayan, and the Roman number systems. 
     B.  Place value or Positional Decimal System   
   The primary focus of this section is to provide an 
informative account of the place value system. 

The place value system allows us to construct numbers 
of any size, and most importantly this system helps us 
determine the value of a number at a glance.
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According to Miller, Heeren and Hornsby (1989, 
p.159), in their book Mathematical Ideas; They asserted 
that in a positional numeral, each symbol (called a digit) 
conveys two things:

a) Face value - the inherent value of the symbol.
b) Place value - the power of the base which is 

associated with the position that the digit occupies in the 
numeral.

The symbolic number system that is in use today is 
called the decimal number system.

This counting system is composed of ten symbols 
called digits.

The ten digits are {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
The names of the digits are listed below:
0: Zero, 1: One, 2: Two, 3: Three, 4: Four, 5: Five, 6: 

Six, 7: Seven, 8: Eight, 9: Nine.
This number system is called the Hindu-Arabic 

numeration system. This ten digit number system emerged 
around the year A.D. 800. It is basically the number 
system that is widely used today. With these ten digits it 
is possible to construct members of any size, subject to 
certain conditions. 

The place value rule states that--
a)  In the decimal number system, the value of 

a digit depends on its place or position in the 
number. Thus each place has a value of 10 times 
the place to its right.

b)  Place value decrease from left to right by a power 
of 10.

c)  The position of each digit in a number is important.
The place or position, of a digit in a number determines 

the actual value of a number.
The (base-10) number system contains numerals (or 

digits) only, the digits range from 0 through 9, but we 
often need to use numbers greater than 9. To construct 
numbers greater than 9 it is necessary to employ the place 
value positional algorithm, which means that the value of 
a digit is determined by its place in the entire number. In 
the base-10 number system, each place has a value that’s 
10 times the value of the place immediately to its right. 
Thus the place value system helps us determine the value 
of  numbers.

Consider the number three hundred and twenty one, 
this number can be written using the placed or position 
value system, shown pictorially below, where the digits 
are used in combination to form the number.

Hundreds(100)s Tens(10)s Units(1s)

3 2 1
Figure 1
Digits Are Used in Combination to Form the Number

With the Hindu-Arabic number system, ten ones can 
be replaced by one ten, ten tens can be replaced by one 
hundred, ten hundreds are replaced by one thousand, 10 
one thousand are replaced by 10 thousands, and so on. 
This scheme is illustrated:

1+1+1+1+1+1+1+1+1+1≡10,
10+10+10+10+10+10+10+10+10+10≡100,
100+100+100+100+100+100+100+100+100+100≡100.
In the case of decimal fraction dot (decimal point) 

is used to represent decimal numbers. In this scheme, 
the numbers used in denoting a number take different 
place values depending upon position , as described 
above. Decimal numbers or decimal fractions are a 
proper fraction whose denominator is a power of 10. A 
decimal point is used to separate the fraction from the 
integer. Decimal numbers are written without showing 
denominators. Decimal numbers have three parts: an 
integer, a decimal point, and a decimal number. 

Consider the decimal number 4.25, this number can be 
represented as shown below:

    4.25

lnteger Decimal
 Decimal point

Figure 2 
A Representation f Decimal Numbers 

A decimal number is not necessarily a number with 
a decimal point in it. For numbers that have a decimal 
points, numbers are constructed subject to the following 
conditions:

One decimal place to the right of the decimal point is the “tenths” 
place, but one decimal place to the left of the decimal point is 
the “ones” place. The “tens” place is two places to the left. The 
decimal point lies between the ones place and the tenths place. 
Note that all place value positions to the right of the decimal 
point have a “th” ending. 

The figure below shows that  number to the left of the 
decimal place, represent 1’s, 10’s, 100’s, 1000’s, and so 
on; and  digits to the right of the decimal point represent 
1/10’s, 1/100’s, 1/1000’s, and so forth.

Figure 3  
Place Value Chart
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The sequence of numbers 1000, 100, 10, 1, 1/10’s, 
1/100’s, 1/1000’s, are shown pictorially:

These numbers can also be written in exponential form 
as shown below:

1×10=10=101     0.1=1/10=10-1

10×10=100=102     0.01=1/100=10-2

10×10×10=1000=103       0.001=1/1000=10-3

In the base-10 system the number 178.56 is shown 
pictorially below:

Figure 4
A Representation of Decimal Numbers 

According to Wikipedia, the free encyclopedia: Arabic 
numerals: http://en.wikipedia.org/wiki/Arabic_numerals 

Arabic numerals or Hindu numerals or Hindu-Arabic numerals 
are the ten digits (0, 1, 2, 3, 4, 5, 6, 7, 8, 9). They are descended 
from the Hindu-Arabic numeral system developed by Indian 
mathematicians, in which a sequence of numerals such as “975” 
is read as a whole number. The Indian numerals were adopted by 
the Persian mathematicians in India, and passed on to the Arabs 
further west. They were transmitted to Europe in the Middle 
Ages. The use of Arabic numerals spread around the world 
through European trade, books and colonialism. Today they are 
the most common symbolic representation of numbers in the 
world.

1.  NUMBER SYSTEM CLASSIFICATION
The decimal number scheme is a very complicated system 
consisting of many subsystems. So in order to make sense 
of such a complicated construction, it was found necessary 
to classify the various subsystems according to type. The 
first type of number is the counting, or “natural” numbers.

1.1  The Natural or Counting Numbers
The first type of number is the counting numbers:

The natural or counting numbers can be represented as 
follows:   N = {1, 2, 3, 4, …}.

The natural numbers consist of the set of positive non-
zero numbers or counting numbers. The set is denoted 
with the symbol, N. There is a first counting number, 
and for each counting number, there is a next counting 
number, or a successor. No counting number is its own 
successor. No counting number has more than one 
successor. No counting number is the successor of more 
than one other counting number. Only the number 1 is not 
the successor of any counting number (Peano axioms for 
the natural numbers-without proof).

The natural numbers are used to count physical objects 
in the real world. 

The natural numbers system does not support division 
or negative numbers.

1.2  Whole Numbers 
The second type of number is the whole numbers:

W = {0, 1, 2, 3,  4, . . . } the set is denoted with a 
symbol W. The whole numbers are the natural numbers 
together with zero. This number system allows us to add 
and multiply whole numbers. For example the sum of 
any two whole numbers is also a whole number: 4 + 20 = 
24, and the product of any two whole numbers is a whole 
number (4×20 = 80). This number system does not 
support subtraction and division.

1.3  The Integers
The third type of number system is the integers:

The integers are the set of numbers consisting of the 
natural numbers, their additive inverses and zero. This 
number system is usually symbolized as follows:

W ={..., -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5...}.
Thus the sum, product, and difference of any two 

integers are also integer. However this is not true for 
division, that is 1 ÷ 2 is not an integer.

1.4  The Rational Numbers  
The fourth type of number is the rationales:

The rational numbers are those numbers which can be 
expressed as a ratio between two integers.

∵ = { p/q| p, q ∈  Z and  q ≠ 0 }  or equivalently   Q 
= Z x (Z\{0}).

Where p and q are integers; the set of fractions (pairs 
of integers) with non-zero denominator. with the following  
relation ∵: p1/q1□p2/q2 if and only p1 q2=p2 q1.

The set of rational numbers are ratios of integers 
(where the divisor is non-zero), such as 2/5, -2/11, etc.. 
Note that the integers are included among the rational 
numbers, for example, the integer 3 can be written as 3/1, 
or even 8/2 . Additional examples of rational numbers are 
1/2  -4/7, 6, and 0. Any rational number may be (written 
as a terminating number, like 0.4 or a repeating decimal 
number, like 0.3333…). A rational number is a number 
that can be used to do mathematics: that is calculations, 
solve equations that do not involve radicals, and used to 
represent measurements. In general arithmetic operations 
that involve the sum, product, quotient, and the difference 
of any two integers are also a rational. However this is not 
true for irrational, that is, √ 2  is not a rational number.

1.5  The Irrational Number
The fifth type of number is the irrationals:

L= { x | is a real number, but x cannot be written as  a 
quotient of integers}

An irrational number is a number that cannot be 
written as a ratio (or fraction). In decimal form, this 
number system never ends or repeats. The Pythagorean 
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discovered that not all numbers are rational; there are 
equations that cannot be solved using ratios of integers.

It turns out that the rational numbers are not enough to 
describe the world. Consider, for example, a right triangle 
whose two short sides are each 1 unit long. Then by the 
Pythagorean Theorem the longest side of the triangle, 
the hypotenuse, has a length whose square equals 2. This 
length is usually referred to as the square root of  2 (√2).

Prove that: √2+√3 is an irrational number. We will 
prove the statement, by appealing to the technique of proof 
by contradiction. Assume that p and q are integers and 

p≠0 with no common integer factors, then  √2+√3 =
p
q , 

 assume that this fraction is in its simplest form. 

Rearrange: √ 3 = p
q -√2- squaring both sides:

书书书
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integers, this implies that √2 is a rational number, which 
is impossible, and so √2+√3 is an irrational number.

Thus the sum, product, quotient, rational and the 
difference of any two irrational is also an irrational 
number. However this is not true for complex number, 
that is, numbers of the form, a+bi  is not an irrational 
number.

The union of the natural, whole, integers, rational 
and irrational is usually referred to as the real numbers, 
symbolized as follows: R=N È W È ZÈ QÈ L. We will 
have much more to say about the real numbers in late 
sections 

1.6  The Complex Numbers
The sixth type of number is complex numbers:

In mathematics, a complex number is a number of the 
form a+bi ,where a and b are real numbers, and i is the 
imaginary unit, with the property i2=-1. The real number 
a is called the real part of the complex number, and the 
real number b is the imaginary part. Real numbers may 
be considered to be complex numbers with an imaginary 
part of zero; that is, the real number a  is equivalent to the 
complex number a +0i.  The basis number system can be 
characterized as followed: N Ì W Ì Z Ì QÌ R ÌLÌ C.

1.7a  An Ordered Set
The real numbers  have the property that they are ordered, 
which means that given any two different numbers we 
can say that one number is greater or less than the other 
number. 

A formal way of saying this is: Symbols are used to 
show how the size of one number compares to another. 

These symbols are < (less than), > (greater than), and = 
(equals.)

For any two real numbers a and b, one and only one of 
the following three statements is true:

a) a is less than b, (expressed as a  < b),
b) a  is equal to b, (expressed as a =b),
c) a  is greater than b, (expressed as a  > b).

1.7b  Complex Numbers
The field □ of complex numbers is not an ordered field 
under any ordering.

Proof: Suppose i>0. Squaring both sides gives i2>0 or  
-1>0: Adding 1 to both sides of the inequality gives  0>1; 
and so we have a contradiction.

1.8  The Real Numbers Line
The geometrical representation of the real numbers on the 
number line (or the real number line to be mathematical 
precise), is depicted in Figure 5. This representation 
allows us to set up a one-to-one correspondence between 
real numbers and points on the number line. The ordered 
nature of the real numbers lets us arrange the numbers 
along a line. The line is made up of an infinite number of 
points all packed so closely together that they form a solid 
line. The points are ordered so that points to the right are 
greater than points to the left:

Figure 5
The Real Number Line

Every real number corresponds to a distance on 
the number line, starting at the center (zero). Negative 
numbers represent distances to the left of zero, and 
positive numbers are distances to the right. The arrows on 
the end of the line indicate that the line keeps on going 
forever in both directions. 

1.9  The Real Numbers
The real number can be represented as follows: 

R= { x | x is a number which may be written as a 
decimal}

= ∈ ∪ ∩ ∅{ x :  x L, L= }  

= ∉L { x :  x }  

,  w h e r e 
= ∈ ∪ ∩ ∅{ x :  x L, L= }  

= ∉L { x :  x }  , the set of irrational numbers. This set 
includes all rational and irrational numbers.  

The real number system evolved over time by 
expanding the notion of what we mean by the word 
“number.” At first, “number” meant something one could 
count, like how many cows a farmer owns. These were 
called the natural numbers, or sometimes the counting 
numbers.

The set of real numbers includes all rational and 
irrationals numbers. The set of real numbers is closed for 
the operations of addition, subtraction, multiplication and 
division, and roots of positive numbers. The real number 
system allows us to carry out mathematical operations 
involving the number subsystem listed below.
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Figure 6  
Real Number System

With respect to the rational numbers, odd roots of 
negative numbers exist, however even roots of negative 
numbers do not exist. 

1.10  Properties of the Real Numbers
We now define the properties of the real number system 
that allows us to carry out operations such as addition, 
subtraction, multiplication, and division.

a) Closure property for addition if a and b are real 
numbers, then a+ b is a  unique  real number.

b) Closure property for multiplication  if  a and  b are 
real numbers, then  ab  is  a  unique  real number.

c) Commutative property of addition if  a and  b are 
real numbers, then a+ b =   b+a.

d) Commutative property of multiplication if  a and  b 
are real  numbers, then  ab = ba.

e) Associative property of addition if a, b and c are real 
numbers, then (a+ b)+c = a+(b+c).

f) Associative property of multiplication if  a, b and c 
are real numbers, then (ab)c = a(bc).

g) Identity property of addition if a is any real number, 
then a + 0 = a.

h) Identity property of multiplication if  a is any real 
number,  then   a(1) = a.

i) Additive inverse property for every real number a, 
there exists a unique real number a  such that a+(-a )=0.

j) Multiplication property of zero if a is a real number, 
then  a (0) = 0.

k) Multiplication property of negative one if a is a real 
number, then a (-1)=-a.

l) Multiplicative inverse property for every real 
number a, there exists a unique real  number 1/ a such that  
a (1/ a) = 1.

m) Distributive property   if a (b+c)=ab+ac.

1.11  Absolute Value
The absolute value of a number is the distance from that 
number to the origin (zero) on the number line. That 
distance is always given as a non-negative number. If a 
number is positive (or zero), the absolute value function 
does nothing to it, for example |5| =5.  If a number is 
negative, the absolute value function makes it positive, for 
example |-5| = 5.

Absolute value problems involve inequality can be 
resolved by rewritten the problem as a combination of 
inequalities as shown below:

Let a be a positive real number then:  |x| < a: if and 
only if  -a < x < a. 

and: |x| > a: if and only if x < -a or x > a.
The absolute value of a number is the distance the 

number is from 0 on the real number line. Thus the 
inequality |x| < a is satisfied by numbers whose distance 
from 0 is less than a. The set of numbers between -a and a, 
is depicted below:

Figure 7 
Absolute Value

The inequality |x| > a is satisfied by numbers whose 
distance from 0 is larger than a. So the solution is for 
numbers that are either larger than a, or less than -a.

Figure 8
Absolute Value
1.12  The Rational Numbers Field Theorem
This section is partially based on books: Keenan and 
Gantert (1991, pp.23-25), Integrated Mathematics Course 
III, and Bumby, Klutch, Collins and Egbers (1996, pp.694 
-698); Integrated Mathematics Course II, and  Lay (2000, 
p.95) 

A field is a mathematical system consisting of a set F 
and two operations, usually addition and multiplication, 
which satisfies eleven properties:

1-5:  The set F is a commutative group under the 
operation of addition, satisfying five properties: 
closure, associativity, the existence of an identity 
for addition (usually 0), the existence of inverses 
under addition, and commutatively.

6-10:  The set without the additive identity (usually 
F /{0} is a commutative group under the 
operation of multiplication, satisfying five 
properties: closure, associativity, the existence 
of an identity for multiplication (usually 1), the 
existence of inverses under multiplication, and 
commutatively.

11:  The second operation,  multiplication,  is 
distributive over the first operation, addition.     

Definition. (F, +, •) is a field if and only if
a) (F, +) is commutative group,
b) (F/{0}) is a commutative group,
c) Multiplication distributes over addition.

1.13  Properties of the Rational Numbers
The field axioms are generally written in additive and 
multiplicative pairs. 
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Table 1 
The Field Axioms

Names Addition Multiplication

Commutatively a+b = b+a ab=ba

Associativity (a+b)+c= a+(b+c) (ab)c=a(bc)

Distributivity a(b+c)=ab+ac (a+b)c= ac+bc

Identity a+0= a= 0+a a•1= a=1•a

Inverses a+(-a) = 0 aa-1=1=a-1a if a≠0

2.  MATHEMATICAL SYSTEMS
There are many competing definition as to what constitute 
a mathematical system: the two main candidates are listed 
below. 

2.1  Case 1
This structure is partially due to Occhiogrosso (1992), 
Reviewing Integrating Mathematics course II.

A mathematical system consists of the following six 
statements:

a) a set of undefined concepts, or set of elements, 
b) a universal set, or set of elements,
c) a set of relations, 
d) one or more operations defined for this set,
e) definitions and rules concerning this set and its 

operations,
f) conclusions concerning this set and its operations, 

definitions, and rules.

2.2  Case 2
This structure is partially due to Miller, Heeren and 
Hornsby (1989) 

A mathematical system is made up of three things:
a) a set of elements,
b) one or more operations for combining the elements,
c) one  or more relations for combining the elements.
Where a set is defined as:  A collection of objects. 

The objects belonging to the set are called the elements, 
or members, of the set. For example the set of positive 
integers from 1 to 6: { 1, 2, 3, 4 5, 6}. The ways of 
combining the elements (called operations) and ways of 
comparing the elements (called relations).  An example of a 
mathematical system is the set of whole numbers  {0, 1, 2, 3, 
…}, along with the operation  of addition and the relation 
of equality.  In mathematics, the concept of a relation or 
relationship, such as the relation of equality, denoted by the 
sign “=“ in a statement like “4+8=12,” or the relation of 
order, denoted by the sign “<“ in a statement like “6 < 12”. 
Relations that involve two objects are called binary relation. 

2.3  Equality
From Kaufmann (1992, p.6) an equality is a statement 
in which two symbols are grouped, or group of symbols, 
are named for the same number.  The symbol = is used to 
express an equality. From Lay (2000, p.47)  a relation R 

on a set S is an equivalence relation if it has the following 
properties for all x, y, z in S.

a) Reflexive property — xRx: For any real number a: a 
= a

Example:  5=5;   x = x ;   a+b = a+b.
b) Symmetric property –If  xRy, then yRx: For any real 

number a and b

书书书

  if a=b then b=a
Example:  If 13+1=14, then 14=13+1  and  if  3= x+ 2 

then x + 2=3.
c) Transitive property If xRy and yRz, then xRz: For 

any real number a, b, and c 

书书书

  if a=b and b=c then a=c.
Example: If 3+4=7 and 7=5+2, then 3+4=5+2, and if  

x+1=y and y=5, then  x+1=5.

2.4  Quantifiers
To create more complex mathematical statements, use the 
quantifiers “there exists”, written 

书书书







, and “for all”, written 

书书书





. If  P(x) is a predicate, then
*   $x: P(x) means, “There exists an x such that P(x) 

holds.”
*   ∀x: P(x) means, “For all x, it is the case that P(x) 

holds.”
  For example, if x denotes a real number, then
*   $x: x2 = 9 is true, since 3 is an x  for which x2= 9. 
However “x:x2= 9, is  false;  not all numbers, when 

squared, are equal to 9.
*  ∀x: x2+1 > 0 is true, but ∀x: x2> 2 is false, 

since for example  x = 0.5 doesn’t satisfy  the 
predicate. On the other hand, $x: x2> 3 is true, 
since x = 2 is an example that satisfies it.

3.  ARCHIMEDEAN PRINCIPLE FOR THE 
REAL NUMBERS
Archimedean principle states that the set of real numbers 
is not bounded above.

For any real number x, there exists an integer n such 
that x<n.

Proof: For any real number ,  n, st  >x n x∈ ∃�

Figure 9
Real Number Line

The scenario is depicted in the figure above. Suppose 
x=3.55, then there exist a natural number, say 5 that is 
larger than 3.55, that is 5>3.55.

Suppose the Archimedean Principle is false, and 
that x>n, for all integer n. Then the set of integer  is 
bounded above, and by the Completeness Axiom the set  
has a least upper bound M . Since M is the least upper 
bound, M-1 cannot be an upper bound. Suppose there 
is an integer n such that , M-1<n. That is, since M is an 
upper bound,  has a supermum M. Since ever subset 
of  that is bounded above has a supermum. Then for 
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M-1, ,st -1<n M n M∃ ∈ ≤� . By characterization of 

supernum(stated not proven ). Thus 1M n< + ∈� , 
since M is a supernum of . This is a contradiction of what 
we have assumed, and so there exists an integer n such 
that x<n.

4 .  D E N S I T Y  O F  T H E  R AT I O N A L 
NUMBERS: NAIVE PROOF
A subset S of rational number ( )  is said to be dense in 
 if between any two real numbers a and b, there are a 

rational number. The density of the rational numbers ( ) in 
the real numbers means that  is a closure of  in the sense 
that  is a set of all limit of the rational numbers. That 
is, a sequence of rational numbers converges to the real 
numbers.

The proof is based on Archimedean Principle and on 
the Completeness Property of the real numbers. If  x < y, 
then   st, x<r<yr∃ ∈� . That is between any two real 
numbers there exist a rational number. Proof : Assume 
without loss of generality :  x > 0 and y > x; Then  y-x > 0. 

By Archimedean Principle 
 1  st,  0<n y x

n
∃ ∈ < −□  

   

书书书

ny-nx>1
   

书书书

nx+1<ny (1)
For   nx,

书书书







m st
   m≤nx<m+1 (2)
Since    m≤nx
    Then m+1≤nx+1 (3)
Then combining (1), (2) and (3): 
  nx<m+1<nx+1<ny
Then  nx<m+1<ny

书书书

 1 mx y
n
+

⇒ < <

Thus  1 mx y
n
+

⇒ < < is a rational number.

Thus between the real number x and y there is a 

rational  1 mx y
n
+

⇒ < <.

5.  GROUP THEORY:  WHAT IS GROUP 
THEORY?
Before I answer this question, I am going to solve 2 
equations; Problems may be regarded as trivially simple.  

Question 1: solve for x: 2x=3. 
Question 2: solve for x: bx2=ab.
Solution 1: Before solving this problem, it is essential 

that we ask the question, what number system would we 
like x to represent:

This problem can be solved by dividing both sides of 
the equation by 2: to give x=3/2=1.5 

a)  If x is a natural number or a negative integer then 
this problem has no solution.

b)  On the other hand if x is a rational number then 
this problem has a solution.

Solution 2: This problem can be solved by dividing 
both sides of the equation by b, then taking the square root 
of both sides of the equation: To give x=±√a  

a)  If a is a positive number then the problem has a 
solution.

b)  It a is a negative number then this problem has 
no solution.

To gain an understanding of equation of the form: 
a x=b, it will be necessary to consider what types of 
numbers a , b and x are, and to further consider the type of 
operation the dot ( ) symbolized.  

With regard to group theory this equation has a 
unique solution. Group theory does not concern itself 
with the category to which the variables a, b and x 
belongs,  nor with the operation symbolized by dot 
( ). Thus group theory can handle many different 
mathematical systems simultaneously; and then finds  
properties common to all such system subject to four 
rules called the group axioms:

5.1  Group Axioms 
Definition: Let G be a set and let ● be a binary 

operation defined on G. Then (G, ●) is a group if the 
following four axioms G1-G4 holds:

G1:  Closure: If g1 and g2 are in the group, then g1 g2 
also belongs to the group.

G2:  Associativity: If g1, g2 and g3 are in the group 
then (g1 g2) g3=g1 (g2 g2) also belongs to the 
group.

G3:  Identity: There exist an identity element e∈G 
such that, for all g∈G, g e=e g=e.

G4:  Inverse: For each g∈G, there exists an inverse 
element g-1∈G, such that g g-1=g-1 g=e.

5.2  Problems Involving Cyclic Subgroup of a 
Group
I have worked out two problems in great detail that 
students usually have difficulties understanding:

Problem1: Find the generators for multiplication 
modulo 7.

Consider the situation: { 7/{0},X7}={1,2,3,4,5,6}.
To make sense of this problem, it is best to construct a 

Caley Table.

Table 2
Caley Table 

X7 1 2 3 4 5 6
1 1 2 3 4 5 6
2 2 4 6 1 3 5
3 3 6 2 5 1 4
4 4 1 5 2 6 3
5 5 3 1 6 4 2
6 6 5 4 3 2 1
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This table was completed using modular arithmetic.
For a positive integer n, and integers a and b are said 

to be congruent modulo n, written as:
a≡b(mod n). If the difference between a − b is an 

integer multiple of n (that is  n divides a − b). The number 
n is called the modulus of the congruence. Integers 
congruent to a modulo n form a set called congruence class, 
residue class or simply residue of the integer a, modulo n.

Table 1 was constructed using modular arithmetic. 
Column two were constructed as follows:   

2×1 (mod 7) = 2(mod7) 

书书书

  2 
 7=0 remainder 2

2×2 (mod 7) = 4(mod7) 

书书书

  4 
 7=0 remainder 4

2×3 (mod 7) = 6(mod7) 

书书书

  6 
 7=0 remainder 6

2×4 (mod 7) = 8(mod7) 

书书书

  8 
 7=1 remainder 1

2×5 (mod 7) = 10(mod7) 

书书书

 10
7 =1 remainder 3

2×6 (mod 7) = 12(mod7) 

书书书

 12
7 =1 remainder 5

The rest of the table was completed in a similar 
manner.

To determine the group theory property associated 
with Table 1, we must first check to see if this proposed 
group satisfies the four group axioms:

G1: Closure;  G2: Identity; G3: Inverse and  G4:  
Associative.

G1:  Closure. No new elements were needed to 
complete the table. So the closure property is 
satisfied.

G2:  Identity. The first row and first column repeat 
the elements in order. Therefore the identity 
element is 1.

From the table it can be sees  that: 1x7a=ax71=a

书书书

1=e 
the identity element.

G3:  Inverse. Table 3 was completed with information 
from Table 1. It can be seen that each element 
have an inverse.

Table 3 
Inverse Values

Element x 1 2 3 4 5 6

Inverse x-1 1 4 5 2 3 6

G4: Associative. Multiplication is associative.
Since all four properties are satisfied the elements of 

the table form a group.
The order of the group: The numbers of elements of 

a group (finite of infinite) is called the order.
The order of a group G  is usually symbolized as:|G|
The order of the element: The order of an element 

can be defined as g being an element of G.
g∈G 

书书书

g·g…g=e
 

书书书

gn=e
 And |g|=n

Now consider the order of the elements:
The element 1: 11=1 stop when identity is reached.
The element 2: 21=2
22=2x72=4: 4≡4(mod7)
23=2x72=2=8: 1≡7(mod7) stop when identity is reached.
So the order of the element 2 is 3: That is 23=e(the 

identity element of the group).
Thus 23=e

书书书

{2,4,1}
The element 3:31=3
32=3x73=9: 2≡9(mod7)
33=3x73x73=27: 6≡27(mod7)
34=3x73x73x73=81: 4≡81(mod7)
35=3x73x73x73x73=243: 5≡243(mod7)
36=3x73x73x73x73x73=729: 1≡729(mod7)

stop when identity is reached.
So the order of the element 3 is 6: That is 36=e (is the 

identity element of the group).
The element 4: 41=4
42=4x74=16: 2≡16(mod7)
43=64=4x74x74x7=1≡64(mod7) stop when identity is 

reached.
So the order of the element 4 is 3: That is 43=e (is the 

identity element of the group).
The element 5: 51=5
52=5x75=25: 4≡25(mod7)
53=5x75x75=125: 2≡625(mod7)
54=5x75x75x75=625: 2≡625(mod7)
55=5x75x75x75x75=3125: 3≡3125(mod7)
56=5x75x75x75x75x75=15625: 1≡15625(mod7) stop 

when identity is reached.
So the order of the element 5 is 6: That is 65=e (is the 

identity element of the group).
The element 5: 61=6
62=6x76=36: 1≡36(mod7) stop when identity is reached
So the order of the element 6 is 2: That is 62=e (is the 

identity element of the group).
To make sense of what has been done so far, it will be 

helpful to tabulate the results in a table as follows: Listed 
in the table are the successive powers of an element until 
the number one is reached.

From the table it can be seen that the elements 3 and 5 
generate all the elements of the group.

Table 4
Order of Elements

Elements: g Order of the elements:  g(mod7)

11 {1}

23 {2,4,1}

36 {3,  2,  6,  4, 5,1}

43 {4, 2, 1}

56 { 5,  4, 6, 2, 3, 1}

62 { 6, 1}

It can also be seen that there are only 4 distinct groups: 
{1}, {2,4,1}, {3,  2,  6,  4, 5,1}, { 6,  1}.
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Elements such as 3 and 5 that generate all the elements 
in the group are called cyclic subgroup.

A group G is called cyclic if there exists an element 
g in G such that G=<g>={gn|n is an integer }. It can be 
shown that any group generated by an element in a group 
is a subgroup of that group. 

Problem 2 
For this exercise the table  G  is given  G=({1,  2,  3,  4,  

5,   6, 7,  8}, *)
a: Identify the identity element of this group?
b: If the group G is cyclic, identify the possible 

subgroup?

Table 5
Caley Table 
Elements: g

* 1 2 3 4 5 6 7 8

1 1 2 3 4 5 6 7 8

2 2 5 4 7 6 1 8 3

3 3 8 5 2 7 4 1 6

4 4 3 6 5 8 7 2 1

5 5 6 7 8 1 2 3 4

6 6 1 8 3 2 5 4 7

7 7 4 1 6 3 8 5 2

8 8 7 2 1 4 3 6 5

We must first check to see if this group satisfies the 
four group axioms:

G1:Closure. No new elements were needed to 
complete the table. So the closure property is satisfied.                                                                       

G2: Identity. The first row and first column repeat the 
element in order. Therefore the identity element is 1.

From the table it can be sees  that: 1×a=a×1=a

书书书


1=e the identity element.

G3: Inverse. Table 6 was completed with information 
from Table 5. It can be seen that each element has an 
inverse.

Table 6 
Inverses 

Element x 1 2 3 4 5 6 7 8

Inverse x-1 1 6 7 8 5 2 3 4

G4:  Associative.
Multiplication is associative
Since all four properties are satisfied the elements of 

the table form a group.
Solution: part (a)
Since 1×1=1

书书书

1x x=x and x×1=x, therefore the 
identity element is 1.

Part b:  According to John Farleigh (2003, p.59)  in 
his book, A first Course in Abstract Algebra.

A cyclic subgroup<g> generated by element g can be 
defined as follows:

H=<g>={gn|n∈ }.
We now carry out the following test to find subgroups 

generated by the elements of the group G:
For element 1 as generator: <1>=1×1=1 
The subgroup generated by the element <1>={1}
For element 2 as generator: 21=2
22=2×2=5
23=2×5=6
24=2×6=1 Identity found:
Thus subgroup generated by the element <2>={2, 5, 6, 

1}
Note that 2×6=1

书书书

6-1=2 so the subgroup generated 
by the element <6>≡<2>

T h u s  s u b g r o u p  g e n e r a t e d  b y  t h e  e l e m e n t s 
<2>=<6>={2, 5,  6, 1 }

For element 3 as generator : 31=3
32=3×3=5
33=3×5=7
34=3×7=1 Identity found
Note that 3×7=1

书书书

7-1=3 so the subgroup generated 
by the element <7>≡<3>

T h u s  s u b g r o u p  g e n e r a t e d  b y  t h e  e l e m e n t s 
<3>=<7>={3,  5,  7,  1 }

For element 4 as generator 41=4
42=4×4=5
43=4×5=8
44=4×8=1 Identity found.
Note that 4×8=1

书书书

8-14 so the subgroup generated by 
the elements <8>≡<4>

The subgroup generated by the elements <4>=<8>={4,  
5,  8,  1 }

For element 5  as generator: 51=5
52=5×5=1 Identity fount 
The subgroup generated by the element: <5>={5, 1 }              
Listed in the table are the successive powers of an 

element until the number one is reached.

Table 7
Order of Elements

Elements: Order of the elements

11 {1}

24 {2, 5,  6, 1 }

34 {3,  5,  7,  1 }

44 {4,  5,  8,  1 }

52 {5, 1 }              

64 {2, 5,  6, 1 }

74 {3,  5,  7,  1 }

84 {4,  5,  8,  1 }

Since none of the eight elements generated the entire 
group, it is therefore clear that the group is not cyclic. 
That is since |G|=8 and |<g>|={1,2,4}

Therefore G≠<g>That is the group is not cyclic. 
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5.3  Proof of Subgroup of Cyclic Group Is Cyclic
This proof is based on  Farleigh book (2003, p.61), A first 
Course in Abstract Algebra, and Pinter (1990, pp.114-115) 
book, A book of Abstract Algebra:

Let G be a cyclic group,  that is G has a generator, let’s 
call this generator g. This means that 

G=<g>={gn|n∈ }.
 Let H be a subgroup of G , this can be written as:  

H≤G. We want to prove that H is cyclic.
Since G is cyclic, it therefore  has a generator g; 

likewise since  H  is assumed to be cyclic , H also has a 
generator b, and so H consist of all the powers of b.

To prove that H is cyclic it is necessary to find the 
generator of Hand then the check that every element of H 
is a power of this generator.

 We know that G=<g> and H≤G, and H∈G 

书书书

  so 
every element of  H is some power of g.

  Now if H={e}, then H is cyclic. Then gn∈H for 
some  n∈ +. Let m be the smallest integer + such that 
gm∈H. We want to show that every element of H is a 
power of gm , hence gm

 is a generator of H.  We claim that 
c=gmgenerates H: that is H={gm}=<c>.

We now want to show that every b∈H is a power 
of c. Since b∈H and H≤G, this implies that b=gn 
for  some n. If  m is a positive integer, and n is any 
integer, then there exist  unique integer q and r such 
that : n=mq+r for 0≤r<m : where r is the remainder, q 
is the quotient. This relationship is called the Division 
Algorithm.

Since b∈H and H≤G so b=gn for some n∈ . Using 
the Division Algorithm 

n=mq+r for 0≤r<m we can write
b=gn as b=gn=mq+r=(gm)pgr,
so gn= (gm)pgr

书书书

gr=(gm)-pgn.
Since gn∈H and gm∈H, and H is a group, it therefore 

follows that both (gm)-q and gn are in H. It follows that  
(gm)-pgn∈H, and so gr∈H.

Since m was the smallest positive integer such that 
gm∈H and 0≤r<m, then it must be that r =0,  and then 
n=mq, and so: b=gn(gm)p=cq. It therefore follows that b is a 
power of c.

6.  ZERO FACTORS
If  ab=0, then  either a=0 or b=0

Proof by contradiction: Assume that both a and b are 
nonzero. That is a must have multiplicative inverse, that is 
a-1. Then multiply both of   ab=0 by a-1.

To give a-1 ab=a-10. Then b =0.
Since b =0 , this is a contradiction, and the assumption 

was false. It follows that both a and b cannot be nonzero, 
or at least one of them is zero.

7.  THE ZERO CASES: DIVISION BY 
ZERO
If a and b are real numbers, then there are two cases to 

consider for the ratio of the two numbers ab , namely when 

b =0, then x=a
0 , then i.f.f x is a unique real number such 

that a=0x, then by the multiplication property of real 
numbers,  0 x = 0, therefore, a= 0 =0x 

Since a = 0 is impossible, this contradicts the 

assumption that b ≠ 0, so a0  is undefined. 

We can therefore say that dividing a real number by 
zero is undefined. The other case under consideration is 

when both a = b=0 , that is when x = 00 .

Given that  x = 00 , then  i.f.f  x is a unique real number 

such that 0 = 0x.  Now by the zero multiplication property 
of real numbers; 0 =0x  for all values of x. Therefore x is 

not unique and so 00  is undefined, since for example if x = 

1, 2, 3…  then
0=0×1=0,
0=0×2=0,
0=0×3=0, 

since the value of  x is not unique.

8.   BRIEF HISTORY OF NEGATIVE 
NUMBERS
This section of the paper provides a brief historical 
account of negative numbers. According to numerous 
sources, among them Rajapakse (2012), who claimed 
that the concept of negative numbers was first introduced 
by the Indian mathematician Brahmagupta (c. 598–c. 
670); and that Brahmagupta also devised the four rules 
of arithmetic (addition, subtraction, multiplication and 
division) using real numbers. In addition Brahmagupta 
introduced many fundamental concepts to basic 
mathematics, including the use of zero in the decimal 
number system, and the use of algebra to describe and 
predicting astronomical events.

There is disagreement among mathematics historians 
as to who first introduced the concept of negative number 
into mathematics. According to a listing in Wikipedia, 
Struik (1987, cited in Wikipedia):

Negative numbers appear for the first time in history in the Nine 
Chapters on the Mathematical Art (Jiu zhang suan-shu), which 
in its present form dates from the period of the Han Dynasty (202 
BC – AD 220).

According to Frey  (2012 ) and others,  Fibonacci 
and Cardano were both accredited with introducing the 
concept of negative numbers to Europe. Frey and others  
claimed that Fibonacci’s book Liber Abaci contained 
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problems with negative solutions, interpreted as debts 
(13th century); and that Cardano’s Ars Magna included 
negative solutions of equations and also had basic laws of 
operating with negative numbers (16th century).

It took mathematicians centuries to accept the notion 
of negative numbers, where the concept was regarded as  
“absurd” or “fictitious.” Consider  the paper by Rogers 
(1997 ), who asserted that:

Although the first set of rules for dealing with negative numbers 
was stated in the 7th century by the Indian mathematician 
Brahmagupta, it is surprising that in 1758 the British 
mathematician Francis Maseres was claiming that negative 
numbers
    ... darken the very whole doctrines of the equations and make 
dark of the things which are in their nature excessively obvious 
and simple.

This part of the paper is divided into two sections. 
The first section is entitled Graphical Method.  In this 
section, several graphical techniques were used to show 
that a negative times a negative equals a positive, and 
for the second section entitled Algebraic Method several 
algebraic techniques were used to show that  (-1)*(-1) =1.

8.1  Graphical Method -Section 1a
Probable, the simplest way to show that (-1)*(-1) =1, is 
to appeal to the method of opposite of a real number. The 
method of opposite asserts that for a real number: If two 
numbers are the same distance from zero on the number 
line, then for real number a;  -a is the additive inverse of 
a. To demonstrate this method, consider the following 
situations:

 Number  Opposite
   1   -1
   -1  -1(-1) =1

Figure 10
 Real Number Line

Since -1 is a negative number, |-1|=-(-1)=1, given that 
the additive inverse of -1 is +1

It can also be seen from Figure 9, that  -1 is opposite to 
+1, and that +1 is opposite to -1.

This demonstration shows that, the opposite of the 
negative of a number is that number.

8.2  Section 1b
Consider the following sequence of numbers: -16, -12, -8, 
-4, 0, 4, 8, 12, 16…..

This sequence of numbers can be rewritten in the form 
of a table, and on the number line as follows:

 4(-4)=-16
3(-4)= -12
2(-4)= - 8
1(-4)= -4
0(-4)=  0
-1(-4)= 4
-2(-4)= 8
-3(-4)= 12
-4(-4)= 16

 

Figure 11
Real Number Line

This type of pattern recognition reasoning suggests 
that the product of two negative real numbers is a positive 
real number.

This result can be generalized by incorporate the 
concept of absolute values to describe multiplication as 
follows:

a) The product of two positive real numbers or two 
negative real numbers is the product of their absolute 
values.

b) The product of a positive and a negative number 
(order not important) is the opposite of the product of 
their absolute values.

c) The product of a zero and any real number is zero.
The following examples illustrate the concept of 

multiplication:
a) (-1)(-1)=|-1|·|-1|=1·1=1,
b) (1)(-1)=-(|1|·|-1|)=-(1·1)=-1,
c) (-1)(1)=-(|-1|·|1|)=-(1·1)=-1,
d) (-1)(0)=0 and (0)(-1)=0.

8.3  Section 1c
The sequence of numbers from section 1b: -16, -12, -8, 
-4, 0, 4, 8, 12, 16…  can be presented in  tabular form as 
shown in Table 9, below:

The constant factor of 4 in Table 9,  can be replaced 
with the real variable k ( or k = 4)  as shown in Table 
10.

The coefficient of  k  can be replaced with the real 
variable x: -4, -3, -2, -1, 0, 1,  2,  3, 4,… as shown in 
Table 9.

Table 8 
Sequence of Numbers in Tabular Form

-16 -12    -8    -4     0      4    8 12 16 …

(-4)(4) (-3)(4) (-2)(4) (-1)(4) (0)(4) (1)(4) (2)(4) (3)(4) (4)(4) …..

Table 9
The Coefficient of  k

-4k -3k -2k -1k 0k 1k 2k  3k 4k ….
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Table 10 
Rearrangement of Tables 8 and 9

x -4 -3 -2 -1 0 1 2 3   4

k=4

y= - kx 16 12 8 4 0 -4 -8 -12 -16

The constant multiplier of k=4 represents the slope of 
the line in the  x-y  plane passing through the origin; the 
array of numbers can be represented by the formula y = - 
kx or    y = - 4x .  A plot of this situation is given in Figure 
11.

y =- 4x
if x= -1
theny =- 4x
y=- 4(-1)=4

Figure 12
Graphical Representation 

This result suggests that the product of two negative 
real numbers is a positive real number.

Section 2: Using algebraic method to show that  (-1)* 
(-1) =1.

Using the properties of the real numbers to show that 
(-1)*(-1) =1.

a) 

书书书





a∈ , 

书书书







 an element -a such that a+(-a)=0, additive 
inverse.

b) Distributive property, a(b+c)=ab+ac.
Please see Appendix A and B, for an explanation of 

Ordered Fields and Equality.
Example 1
    If(-1)(-1)=1. (1)
Show that the left and right hand side of equation 1 is 

equal to zero.
Then    (-1)(-1)-1=0.
Let -1= +(-1)(1) (-1)(-1)+(-1)(1)=0 Multiplicative 

Property.
Factoring out (-1) (-1)[(-1)+(1)]=0 Distributive 

Property.
Assume (-1)+(1)=0 Additive inverse property.     
It thus follows that (-1)[0]=0.
0=0 Multiplicative property of zero.
Result as required 0=0 Reflective property of 

equality. 
Example 2
Show that (-1)(-1) =1, using the distributive and the 

additive inverse property of the real numbers.  Assume 
that the real number properties are true, for a(b+c)=ab+ac. 

Given that  a=-1, b=1, c=-1 and 1+(-1)=0
Using distributive property a(b+c) = ab + ac
Substitution  (-1)[1+(-1)]=(-1)(1)+(-1)(-1) (2)
Additive inverse on the left hand side (-1)[0] = -1 + 

(-1)(-1)
0 = -1 + (-1)(-1), adding 1 to both sides
Required result  1=(-1)(-1)
Next consider the case where  (-1)(-1) ≠1. 
Proof by contradiction
Assume that a=-1, b=1, c=-1 and (-1)(-1) = -1
Using distributive property: a(b+c)=ab+ac.
Substitution -1[ 1+ (-1)] = (-1)(1)+(-1)(-1) (3)
Additive inverse -1[0]=-1-1
Result  0=-2, contradiction
It there follows that 1 = (-1)(-1).
General Proof 1, show that (-a)(-b)=ab. 
This proof relies on the distributional properties, and 

the additive inverse property of the real numbers. 
Let a , b and x  be any real numbers.
Consider the number x defined as follows:
  x=ab + (-a)(b)+(-a)(-b). (4)
Factor out - a from eqn.(4) as follows:

x=ab + (-a)[(b) + (-b)].
Additive inverse

x=ab+(-a)[0], since(b)+(-b)=0.
Thus   x=ab.
Factor out b from eqn.(4) as follows:

 x=[a+(-a)](b) + (-a)(-b).
Additive inverse

x=[0](b)+(-a)(-b), since a+(-a)=0.
Thus   x= (-a)(-b).
Since    ab=x and x=(-a)(-b).
Transitivity of equality property  ab=(-a)(-b). 
General Proof 2, show that (-1)(-a)=a.
(-a)+(-1)(-a)=0= a+(-a) Axiom 5
(-a)+(-1)(-a)=(-a)+a Axiom 2
a+[(-a)+(-1)(-a)]=a+[(-a)+a] Axiom 1
[a+(-a)]+[(-1)(-a)]=[a+(-a)]+a Axiom 3
0+(-1)(-a)=0+a Axiom 5
(-1)(-a)+0=a+0 Axiom 2
(-1)(-a)=a Result  as required Axiom 4 

CONCLUSION
The main goal of this paper is to introduce the readers 
to techniques and ideas associated with the real number 
system and the notion of (-1)(-1) =1. These concepts 
were introduced in a concrete and elementary way to 
allow for a wide readership. It is my fervent desire for 
anyone from a motivated high school student interested 
in mathematics to college students specializing in 
mathematics; that they may find these topics sufficiently 
intriguing that they will want to carry out further 
research on these topics.
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